Evaluate
\frac{19}{6}\approx 3.166666667
Factor
\frac{19}{2 \cdot 3} = 3\frac{1}{6} = 3.1666666666666665
Share
Copied to clipboard
\begin{array}{l}\phantom{180)}\phantom{1}\\180\overline{)570}\\\end{array}
Use the 1^{st} digit 5 from dividend 570
\begin{array}{l}\phantom{180)}0\phantom{2}\\180\overline{)570}\\\end{array}
Since 5 is less than 180, use the next digit 7 from dividend 570 and add 0 to the quotient
\begin{array}{l}\phantom{180)}0\phantom{3}\\180\overline{)570}\\\end{array}
Use the 2^{nd} digit 7 from dividend 570
\begin{array}{l}\phantom{180)}00\phantom{4}\\180\overline{)570}\\\end{array}
Since 57 is less than 180, use the next digit 0 from dividend 570 and add 0 to the quotient
\begin{array}{l}\phantom{180)}00\phantom{5}\\180\overline{)570}\\\end{array}
Use the 3^{rd} digit 0 from dividend 570
\begin{array}{l}\phantom{180)}003\phantom{6}\\180\overline{)570}\\\phantom{180)}\underline{\phantom{}540\phantom{}}\\\phantom{180)9}30\\\end{array}
Find closest multiple of 180 to 570. We see that 3 \times 180 = 540 is the nearest. Now subtract 540 from 570 to get reminder 30. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }30
Since 30 is less than 180, stop the division. The reminder is 30. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}