Evaluate
\frac{57}{41}\approx 1.390243902
Factor
\frac{3 \cdot 19}{41} = 1\frac{16}{41} = 1.3902439024390243
Share
Copied to clipboard
\begin{array}{l}\phantom{41)}\phantom{1}\\41\overline{)57}\\\end{array}
Use the 1^{st} digit 5 from dividend 57
\begin{array}{l}\phantom{41)}0\phantom{2}\\41\overline{)57}\\\end{array}
Since 5 is less than 41, use the next digit 7 from dividend 57 and add 0 to the quotient
\begin{array}{l}\phantom{41)}0\phantom{3}\\41\overline{)57}\\\end{array}
Use the 2^{nd} digit 7 from dividend 57
\begin{array}{l}\phantom{41)}01\phantom{4}\\41\overline{)57}\\\phantom{41)}\underline{\phantom{}41\phantom{}}\\\phantom{41)}16\\\end{array}
Find closest multiple of 41 to 57. We see that 1 \times 41 = 41 is the nearest. Now subtract 41 from 57 to get reminder 16. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }16
Since 16 is less than 41, stop the division. The reminder is 16. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}