Solve for t
t=\frac{85+5\sqrt{36191}i}{114}\approx 0.745614035+8.343829954i
t=\frac{-5\sqrt{36191}i+85}{114}\approx 0.745614035-8.343829954i
Quiz
Complex Number
5 problems similar to:
\frac { 57 } { 16 } t ^ { 2 } - \frac { 85 } { 16 } t = - 250
Share
Copied to clipboard
\frac{57}{16}t^{2}-\frac{85}{16}t=-250
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{57}{16}t^{2}-\frac{85}{16}t-\left(-250\right)=-250-\left(-250\right)
Add 250 to both sides of the equation.
\frac{57}{16}t^{2}-\frac{85}{16}t-\left(-250\right)=0
Subtracting -250 from itself leaves 0.
\frac{57}{16}t^{2}-\frac{85}{16}t+250=0
Subtract -250 from 0.
t=\frac{-\left(-\frac{85}{16}\right)±\sqrt{\left(-\frac{85}{16}\right)^{2}-4\times \frac{57}{16}\times 250}}{2\times \frac{57}{16}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{57}{16} for a, -\frac{85}{16} for b, and 250 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-\frac{85}{16}\right)±\sqrt{\frac{7225}{256}-4\times \frac{57}{16}\times 250}}{2\times \frac{57}{16}}
Square -\frac{85}{16} by squaring both the numerator and the denominator of the fraction.
t=\frac{-\left(-\frac{85}{16}\right)±\sqrt{\frac{7225}{256}-\frac{57}{4}\times 250}}{2\times \frac{57}{16}}
Multiply -4 times \frac{57}{16}.
t=\frac{-\left(-\frac{85}{16}\right)±\sqrt{\frac{7225}{256}-\frac{7125}{2}}}{2\times \frac{57}{16}}
Multiply -\frac{57}{4} times 250.
t=\frac{-\left(-\frac{85}{16}\right)±\sqrt{-\frac{904775}{256}}}{2\times \frac{57}{16}}
Add \frac{7225}{256} to -\frac{7125}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=\frac{-\left(-\frac{85}{16}\right)±\frac{5\sqrt{36191}i}{16}}{2\times \frac{57}{16}}
Take the square root of -\frac{904775}{256}.
t=\frac{\frac{85}{16}±\frac{5\sqrt{36191}i}{16}}{2\times \frac{57}{16}}
The opposite of -\frac{85}{16} is \frac{85}{16}.
t=\frac{\frac{85}{16}±\frac{5\sqrt{36191}i}{16}}{\frac{57}{8}}
Multiply 2 times \frac{57}{16}.
t=\frac{85+5\sqrt{36191}i}{\frac{57}{8}\times 16}
Now solve the equation t=\frac{\frac{85}{16}±\frac{5\sqrt{36191}i}{16}}{\frac{57}{8}} when ± is plus. Add \frac{85}{16} to \frac{5i\sqrt{36191}}{16}.
t=\frac{85+5\sqrt{36191}i}{114}
Divide \frac{85+5i\sqrt{36191}}{16} by \frac{57}{8} by multiplying \frac{85+5i\sqrt{36191}}{16} by the reciprocal of \frac{57}{8}.
t=\frac{-5\sqrt{36191}i+85}{\frac{57}{8}\times 16}
Now solve the equation t=\frac{\frac{85}{16}±\frac{5\sqrt{36191}i}{16}}{\frac{57}{8}} when ± is minus. Subtract \frac{5i\sqrt{36191}}{16} from \frac{85}{16}.
t=\frac{-5\sqrt{36191}i+85}{114}
Divide \frac{85-5i\sqrt{36191}}{16} by \frac{57}{8} by multiplying \frac{85-5i\sqrt{36191}}{16} by the reciprocal of \frac{57}{8}.
t=\frac{85+5\sqrt{36191}i}{114} t=\frac{-5\sqrt{36191}i+85}{114}
The equation is now solved.
\frac{57}{16}t^{2}-\frac{85}{16}t=-250
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{57}{16}t^{2}-\frac{85}{16}t}{\frac{57}{16}}=-\frac{250}{\frac{57}{16}}
Divide both sides of the equation by \frac{57}{16}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\left(-\frac{\frac{85}{16}}{\frac{57}{16}}\right)t=-\frac{250}{\frac{57}{16}}
Dividing by \frac{57}{16} undoes the multiplication by \frac{57}{16}.
t^{2}-\frac{85}{57}t=-\frac{250}{\frac{57}{16}}
Divide -\frac{85}{16} by \frac{57}{16} by multiplying -\frac{85}{16} by the reciprocal of \frac{57}{16}.
t^{2}-\frac{85}{57}t=-\frac{4000}{57}
Divide -250 by \frac{57}{16} by multiplying -250 by the reciprocal of \frac{57}{16}.
t^{2}-\frac{85}{57}t+\left(-\frac{85}{114}\right)^{2}=-\frac{4000}{57}+\left(-\frac{85}{114}\right)^{2}
Divide -\frac{85}{57}, the coefficient of the x term, by 2 to get -\frac{85}{114}. Then add the square of -\frac{85}{114} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{85}{57}t+\frac{7225}{12996}=-\frac{4000}{57}+\frac{7225}{12996}
Square -\frac{85}{114} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{85}{57}t+\frac{7225}{12996}=-\frac{904775}{12996}
Add -\frac{4000}{57} to \frac{7225}{12996} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{85}{114}\right)^{2}=-\frac{904775}{12996}
Factor t^{2}-\frac{85}{57}t+\frac{7225}{12996}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{85}{114}\right)^{2}}=\sqrt{-\frac{904775}{12996}}
Take the square root of both sides of the equation.
t-\frac{85}{114}=\frac{5\sqrt{36191}i}{114} t-\frac{85}{114}=-\frac{5\sqrt{36191}i}{114}
Simplify.
t=\frac{85+5\sqrt{36191}i}{114} t=\frac{-5\sqrt{36191}i+85}{114}
Add \frac{85}{114} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}