Evaluate
\frac{625}{64}=9.765625
Factor
\frac{5 ^ {4}}{2 ^ {6}} = 9\frac{49}{64} = 9.765625
Share
Copied to clipboard
\begin{array}{l}\phantom{576)}\phantom{1}\\576\overline{)5625}\\\end{array}
Use the 1^{st} digit 5 from dividend 5625
\begin{array}{l}\phantom{576)}0\phantom{2}\\576\overline{)5625}\\\end{array}
Since 5 is less than 576, use the next digit 6 from dividend 5625 and add 0 to the quotient
\begin{array}{l}\phantom{576)}0\phantom{3}\\576\overline{)5625}\\\end{array}
Use the 2^{nd} digit 6 from dividend 5625
\begin{array}{l}\phantom{576)}00\phantom{4}\\576\overline{)5625}\\\end{array}
Since 56 is less than 576, use the next digit 2 from dividend 5625 and add 0 to the quotient
\begin{array}{l}\phantom{576)}00\phantom{5}\\576\overline{)5625}\\\end{array}
Use the 3^{rd} digit 2 from dividend 5625
\begin{array}{l}\phantom{576)}000\phantom{6}\\576\overline{)5625}\\\end{array}
Since 562 is less than 576, use the next digit 5 from dividend 5625 and add 0 to the quotient
\begin{array}{l}\phantom{576)}000\phantom{7}\\576\overline{)5625}\\\end{array}
Use the 4^{th} digit 5 from dividend 5625
\begin{array}{l}\phantom{576)}0009\phantom{8}\\576\overline{)5625}\\\phantom{576)}\underline{\phantom{}5184\phantom{}}\\\phantom{576)9}441\\\end{array}
Find closest multiple of 576 to 5625. We see that 9 \times 576 = 5184 is the nearest. Now subtract 5184 from 5625 to get reminder 441. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }441
Since 441 is less than 576, stop the division. The reminder is 441. The topmost line 0009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}