Solve for x
x=\frac{2y}{3}
y\neq 0
Solve for y
y=\frac{3x}{2}
x\neq 0
Graph
Share
Copied to clipboard
3\times 56x=112y
Multiply both sides of the equation by 48y, the least common multiple of 16y,3.
168x=112y
Multiply 3 and 56 to get 168.
\frac{168x}{168}=\frac{112y}{168}
Divide both sides by 168.
x=\frac{112y}{168}
Dividing by 168 undoes the multiplication by 168.
x=\frac{2y}{3}
Divide 112y by 168.
3\times 56x=112y
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 48y, the least common multiple of 16y,3.
168x=112y
Multiply 3 and 56 to get 168.
112y=168x
Swap sides so that all variable terms are on the left hand side.
\frac{112y}{112}=\frac{168x}{112}
Divide both sides by 112.
y=\frac{168x}{112}
Dividing by 112 undoes the multiplication by 112.
y=\frac{3x}{2}
Divide 168x by 112.
y=\frac{3x}{2}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}