Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\left(a-28\right)\left(56-2a\right)=-\left(56-a\right)
Variable a cannot be equal to 28 since division by zero is not defined. Multiply both sides of the equation by 2\left(a-28\right), the least common multiple of 2,56-2a.
112a-2a^{2}-1568=-\left(56-a\right)
Use the distributive property to multiply a-28 by 56-2a and combine like terms.
112a-2a^{2}-1568=-56+a
To find the opposite of 56-a, find the opposite of each term.
112a-2a^{2}-1568-\left(-56\right)=a
Subtract -56 from both sides.
112a-2a^{2}-1568+56=a
The opposite of -56 is 56.
112a-2a^{2}-1568+56-a=0
Subtract a from both sides.
112a-2a^{2}-1512-a=0
Add -1568 and 56 to get -1512.
111a-2a^{2}-1512=0
Combine 112a and -a to get 111a.
-2a^{2}+111a-1512=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-111±\sqrt{111^{2}-4\left(-2\right)\left(-1512\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 111 for b, and -1512 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-111±\sqrt{12321-4\left(-2\right)\left(-1512\right)}}{2\left(-2\right)}
Square 111.
a=\frac{-111±\sqrt{12321+8\left(-1512\right)}}{2\left(-2\right)}
Multiply -4 times -2.
a=\frac{-111±\sqrt{12321-12096}}{2\left(-2\right)}
Multiply 8 times -1512.
a=\frac{-111±\sqrt{225}}{2\left(-2\right)}
Add 12321 to -12096.
a=\frac{-111±15}{2\left(-2\right)}
Take the square root of 225.
a=\frac{-111±15}{-4}
Multiply 2 times -2.
a=-\frac{96}{-4}
Now solve the equation a=\frac{-111±15}{-4} when ± is plus. Add -111 to 15.
a=24
Divide -96 by -4.
a=-\frac{126}{-4}
Now solve the equation a=\frac{-111±15}{-4} when ± is minus. Subtract 15 from -111.
a=\frac{63}{2}
Reduce the fraction \frac{-126}{-4} to lowest terms by extracting and canceling out 2.
a=24 a=\frac{63}{2}
The equation is now solved.
\left(a-28\right)\left(56-2a\right)=-\left(56-a\right)
Variable a cannot be equal to 28 since division by zero is not defined. Multiply both sides of the equation by 2\left(a-28\right), the least common multiple of 2,56-2a.
112a-2a^{2}-1568=-\left(56-a\right)
Use the distributive property to multiply a-28 by 56-2a and combine like terms.
112a-2a^{2}-1568=-56+a
To find the opposite of 56-a, find the opposite of each term.
112a-2a^{2}-1568-a=-56
Subtract a from both sides.
111a-2a^{2}-1568=-56
Combine 112a and -a to get 111a.
111a-2a^{2}=-56+1568
Add 1568 to both sides.
111a-2a^{2}=1512
Add -56 and 1568 to get 1512.
-2a^{2}+111a=1512
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2a^{2}+111a}{-2}=\frac{1512}{-2}
Divide both sides by -2.
a^{2}+\frac{111}{-2}a=\frac{1512}{-2}
Dividing by -2 undoes the multiplication by -2.
a^{2}-\frac{111}{2}a=\frac{1512}{-2}
Divide 111 by -2.
a^{2}-\frac{111}{2}a=-756
Divide 1512 by -2.
a^{2}-\frac{111}{2}a+\left(-\frac{111}{4}\right)^{2}=-756+\left(-\frac{111}{4}\right)^{2}
Divide -\frac{111}{2}, the coefficient of the x term, by 2 to get -\frac{111}{4}. Then add the square of -\frac{111}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{111}{2}a+\frac{12321}{16}=-756+\frac{12321}{16}
Square -\frac{111}{4} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{111}{2}a+\frac{12321}{16}=\frac{225}{16}
Add -756 to \frac{12321}{16}.
\left(a-\frac{111}{4}\right)^{2}=\frac{225}{16}
Factor a^{2}-\frac{111}{2}a+\frac{12321}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{111}{4}\right)^{2}}=\sqrt{\frac{225}{16}}
Take the square root of both sides of the equation.
a-\frac{111}{4}=\frac{15}{4} a-\frac{111}{4}=-\frac{15}{4}
Simplify.
a=\frac{63}{2} a=24
Add \frac{111}{4} to both sides of the equation.