Solve for m
\left\{\begin{matrix}m=0\text{, }&x\neq 0\text{ and }h\neq 0\\m\in \mathrm{C}\text{, }&h\neq 0\text{ and }x=8\end{matrix}\right.
Solve for h
h\neq 0
x=8\text{ or }\left(m=0\text{ and }x\neq 0\right)
Share
Copied to clipboard
x\times 55mi=440mi
Multiply both sides of the equation by hx, the least common multiple of 1h,xh.
x\times \left(55i\right)m=440mi
Multiply 55 and i to get 55i.
x\times \left(55i\right)m=440im
Multiply 440 and i to get 440i.
x\times \left(55i\right)m-440im=0
Subtract 440im from both sides.
\left(x\times \left(55i\right)-440i\right)m=0
Combine all terms containing m.
\left(55ix-440i\right)m=0
The equation is in standard form.
m=0
Divide 0 by 55ix-440i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}