Solve for N
N=-\frac{ihx}{8m}
m\neq 0\text{ and }x\neq 0\text{ and }h\neq 0
Solve for h
h=\frac{8iNm}{x}
x\neq 0\text{ and }N\neq 0\text{ and }m\neq 0
Share
Copied to clipboard
hx\times 55m=mN\times 440mi
Variable N cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by Nhmx, the least common multiple of Nm,xh.
hx\times 55m=m^{2}N\times \left(440i\right)
Multiply m and m to get m^{2}.
m^{2}N\times \left(440i\right)=hx\times 55m
Swap sides so that all variable terms are on the left hand side.
440im^{2}N=55hmx
The equation is in standard form.
\frac{440im^{2}N}{440im^{2}}=\frac{55hmx}{440im^{2}}
Divide both sides by 440im^{2}.
N=\frac{55hmx}{440im^{2}}
Dividing by 440im^{2} undoes the multiplication by 440im^{2}.
N=-\frac{ihx}{8m}
Divide 55hxm by 440im^{2}.
N=-\frac{ihx}{8m}\text{, }N\neq 0
Variable N cannot be equal to 0.
hx\times 55m=Nm\times 440mi
Variable h cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by Nhmx, the least common multiple of Nm,xh.
hx\times 55m=Nm^{2}\times \left(440i\right)
Multiply m and m to get m^{2}.
55mxh=440iNm^{2}
The equation is in standard form.
\frac{55mxh}{55mx}=\frac{440iNm^{2}}{55mx}
Divide both sides by 55xm.
h=\frac{440iNm^{2}}{55mx}
Dividing by 55xm undoes the multiplication by 55xm.
h=\frac{8iNm}{x}
Divide 440iNm^{2} by 55xm.
h=\frac{8iNm}{x}\text{, }h\neq 0
Variable h cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}