Evaluate
\frac{55}{47}\approx 1.170212766
Factor
\frac{5 \cdot 11}{47} = 1\frac{8}{47} = 1.1702127659574468
Share
Copied to clipboard
\begin{array}{l}\phantom{47)}\phantom{1}\\47\overline{)55}\\\end{array}
Use the 1^{st} digit 5 from dividend 55
\begin{array}{l}\phantom{47)}0\phantom{2}\\47\overline{)55}\\\end{array}
Since 5 is less than 47, use the next digit 5 from dividend 55 and add 0 to the quotient
\begin{array}{l}\phantom{47)}0\phantom{3}\\47\overline{)55}\\\end{array}
Use the 2^{nd} digit 5 from dividend 55
\begin{array}{l}\phantom{47)}01\phantom{4}\\47\overline{)55}\\\phantom{47)}\underline{\phantom{}47\phantom{}}\\\phantom{47)9}8\\\end{array}
Find closest multiple of 47 to 55. We see that 1 \times 47 = 47 is the nearest. Now subtract 47 from 55 to get reminder 8. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }8
Since 8 is less than 47, stop the division. The reminder is 8. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}