Evaluate
\frac{55}{18}\approx 3.055555556
Factor
\frac{5 \cdot 11}{2 \cdot 3 ^ {2}} = 3\frac{1}{18} = 3.0555555555555554
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)55}\\\end{array}
Use the 1^{st} digit 5 from dividend 55
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)55}\\\end{array}
Since 5 is less than 18, use the next digit 5 from dividend 55 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)55}\\\end{array}
Use the 2^{nd} digit 5 from dividend 55
\begin{array}{l}\phantom{18)}03\phantom{4}\\18\overline{)55}\\\phantom{18)}\underline{\phantom{}54\phantom{}}\\\phantom{18)9}1\\\end{array}
Find closest multiple of 18 to 55. We see that 3 \times 18 = 54 is the nearest. Now subtract 54 from 55 to get reminder 1. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }1
Since 1 is less than 18, stop the division. The reminder is 1. The topmost line 03 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}