Evaluate
\frac{540}{19}\approx 28.421052632
Factor
\frac{2 ^ {2} \cdot 3 ^ {3} \cdot 5}{19} = 28\frac{8}{19} = 28.42105263157895
Share
Copied to clipboard
\begin{array}{l}\phantom{19)}\phantom{1}\\19\overline{)540}\\\end{array}
Use the 1^{st} digit 5 from dividend 540
\begin{array}{l}\phantom{19)}0\phantom{2}\\19\overline{)540}\\\end{array}
Since 5 is less than 19, use the next digit 4 from dividend 540 and add 0 to the quotient
\begin{array}{l}\phantom{19)}0\phantom{3}\\19\overline{)540}\\\end{array}
Use the 2^{nd} digit 4 from dividend 540
\begin{array}{l}\phantom{19)}02\phantom{4}\\19\overline{)540}\\\phantom{19)}\underline{\phantom{}38\phantom{9}}\\\phantom{19)}16\\\end{array}
Find closest multiple of 19 to 54. We see that 2 \times 19 = 38 is the nearest. Now subtract 38 from 54 to get reminder 16. Add 2 to quotient.
\begin{array}{l}\phantom{19)}02\phantom{5}\\19\overline{)540}\\\phantom{19)}\underline{\phantom{}38\phantom{9}}\\\phantom{19)}160\\\end{array}
Use the 3^{rd} digit 0 from dividend 540
\begin{array}{l}\phantom{19)}028\phantom{6}\\19\overline{)540}\\\phantom{19)}\underline{\phantom{}38\phantom{9}}\\\phantom{19)}160\\\phantom{19)}\underline{\phantom{}152\phantom{}}\\\phantom{19)99}8\\\end{array}
Find closest multiple of 19 to 160. We see that 8 \times 19 = 152 is the nearest. Now subtract 152 from 160 to get reminder 8. Add 8 to quotient.
\text{Quotient: }28 \text{Reminder: }8
Since 8 is less than 19, stop the division. The reminder is 8. The topmost line 028 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}