Evaluate
\frac{6}{5}=1.2
Factor
\frac{2 \cdot 3}{5} = 1\frac{1}{5} = 1.2
Share
Copied to clipboard
\begin{array}{l}\phantom{45)}\phantom{1}\\45\overline{)54}\\\end{array}
Use the 1^{st} digit 5 from dividend 54
\begin{array}{l}\phantom{45)}0\phantom{2}\\45\overline{)54}\\\end{array}
Since 5 is less than 45, use the next digit 4 from dividend 54 and add 0 to the quotient
\begin{array}{l}\phantom{45)}0\phantom{3}\\45\overline{)54}\\\end{array}
Use the 2^{nd} digit 4 from dividend 54
\begin{array}{l}\phantom{45)}01\phantom{4}\\45\overline{)54}\\\phantom{45)}\underline{\phantom{}45\phantom{}}\\\phantom{45)9}9\\\end{array}
Find closest multiple of 45 to 54. We see that 1 \times 45 = 45 is the nearest. Now subtract 45 from 54 to get reminder 9. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }9
Since 9 is less than 45, stop the division. The reminder is 9. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}