Evaluate
\frac{268}{17}\approx 15.764705882
Factor
\frac{2 ^ {2} \cdot 67}{17} = 15\frac{13}{17} = 15.764705882352942
Share
Copied to clipboard
\begin{array}{l}\phantom{34)}\phantom{1}\\34\overline{)536}\\\end{array}
Use the 1^{st} digit 5 from dividend 536
\begin{array}{l}\phantom{34)}0\phantom{2}\\34\overline{)536}\\\end{array}
Since 5 is less than 34, use the next digit 3 from dividend 536 and add 0 to the quotient
\begin{array}{l}\phantom{34)}0\phantom{3}\\34\overline{)536}\\\end{array}
Use the 2^{nd} digit 3 from dividend 536
\begin{array}{l}\phantom{34)}01\phantom{4}\\34\overline{)536}\\\phantom{34)}\underline{\phantom{}34\phantom{9}}\\\phantom{34)}19\\\end{array}
Find closest multiple of 34 to 53. We see that 1 \times 34 = 34 is the nearest. Now subtract 34 from 53 to get reminder 19. Add 1 to quotient.
\begin{array}{l}\phantom{34)}01\phantom{5}\\34\overline{)536}\\\phantom{34)}\underline{\phantom{}34\phantom{9}}\\\phantom{34)}196\\\end{array}
Use the 3^{rd} digit 6 from dividend 536
\begin{array}{l}\phantom{34)}015\phantom{6}\\34\overline{)536}\\\phantom{34)}\underline{\phantom{}34\phantom{9}}\\\phantom{34)}196\\\phantom{34)}\underline{\phantom{}170\phantom{}}\\\phantom{34)9}26\\\end{array}
Find closest multiple of 34 to 196. We see that 5 \times 34 = 170 is the nearest. Now subtract 170 from 196 to get reminder 26. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }26
Since 26 is less than 34, stop the division. The reminder is 26. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}