Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{53\left(7-2i\right)}{\left(7+2i\right)\left(7-2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 7-2i.
\frac{53\left(7-2i\right)}{7^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{53\left(7-2i\right)}{53}
By definition, i^{2} is -1. Calculate the denominator.
\frac{53\times 7+53\times \left(-2i\right)}{53}
Multiply 53 times 7-2i.
\frac{371-106i}{53}
Do the multiplications in 53\times 7+53\times \left(-2i\right).
7-2i
Divide 371-106i by 53 to get 7-2i.
Re(\frac{53\left(7-2i\right)}{\left(7+2i\right)\left(7-2i\right)})
Multiply both numerator and denominator of \frac{53}{7+2i} by the complex conjugate of the denominator, 7-2i.
Re(\frac{53\left(7-2i\right)}{7^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{53\left(7-2i\right)}{53})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{53\times 7+53\times \left(-2i\right)}{53})
Multiply 53 times 7-2i.
Re(\frac{371-106i}{53})
Do the multiplications in 53\times 7+53\times \left(-2i\right).
Re(7-2i)
Divide 371-106i by 53 to get 7-2i.
7
The real part of 7-2i is 7.