Evaluate
\frac{7}{4}=1.75
Factor
\frac{7}{2 ^ {2}} = 1\frac{3}{4} = 1.75
Share
Copied to clipboard
\begin{array}{l}\phantom{300)}\phantom{1}\\300\overline{)525}\\\end{array}
Use the 1^{st} digit 5 from dividend 525
\begin{array}{l}\phantom{300)}0\phantom{2}\\300\overline{)525}\\\end{array}
Since 5 is less than 300, use the next digit 2 from dividend 525 and add 0 to the quotient
\begin{array}{l}\phantom{300)}0\phantom{3}\\300\overline{)525}\\\end{array}
Use the 2^{nd} digit 2 from dividend 525
\begin{array}{l}\phantom{300)}00\phantom{4}\\300\overline{)525}\\\end{array}
Since 52 is less than 300, use the next digit 5 from dividend 525 and add 0 to the quotient
\begin{array}{l}\phantom{300)}00\phantom{5}\\300\overline{)525}\\\end{array}
Use the 3^{rd} digit 5 from dividend 525
\begin{array}{l}\phantom{300)}001\phantom{6}\\300\overline{)525}\\\phantom{300)}\underline{\phantom{}300\phantom{}}\\\phantom{300)}225\\\end{array}
Find closest multiple of 300 to 525. We see that 1 \times 300 = 300 is the nearest. Now subtract 300 from 525 to get reminder 225. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }225
Since 225 is less than 300, stop the division. The reminder is 225. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}