Evaluate
\frac{130660}{19}\approx 6876.842105263
Factor
\frac{2 ^ {2} \cdot 5 \cdot 47 \cdot 139}{19} = 6876\frac{16}{19} = 6876.8421052631575
Share
Copied to clipboard
\begin{array}{l}\phantom{76)}\phantom{1}\\76\overline{)522640}\\\end{array}
Use the 1^{st} digit 5 from dividend 522640
\begin{array}{l}\phantom{76)}0\phantom{2}\\76\overline{)522640}\\\end{array}
Since 5 is less than 76, use the next digit 2 from dividend 522640 and add 0 to the quotient
\begin{array}{l}\phantom{76)}0\phantom{3}\\76\overline{)522640}\\\end{array}
Use the 2^{nd} digit 2 from dividend 522640
\begin{array}{l}\phantom{76)}00\phantom{4}\\76\overline{)522640}\\\end{array}
Since 52 is less than 76, use the next digit 2 from dividend 522640 and add 0 to the quotient
\begin{array}{l}\phantom{76)}00\phantom{5}\\76\overline{)522640}\\\end{array}
Use the 3^{rd} digit 2 from dividend 522640
\begin{array}{l}\phantom{76)}006\phantom{6}\\76\overline{)522640}\\\phantom{76)}\underline{\phantom{}456\phantom{999}}\\\phantom{76)9}66\\\end{array}
Find closest multiple of 76 to 522. We see that 6 \times 76 = 456 is the nearest. Now subtract 456 from 522 to get reminder 66. Add 6 to quotient.
\begin{array}{l}\phantom{76)}006\phantom{7}\\76\overline{)522640}\\\phantom{76)}\underline{\phantom{}456\phantom{999}}\\\phantom{76)9}666\\\end{array}
Use the 4^{th} digit 6 from dividend 522640
\begin{array}{l}\phantom{76)}0068\phantom{8}\\76\overline{)522640}\\\phantom{76)}\underline{\phantom{}456\phantom{999}}\\\phantom{76)9}666\\\phantom{76)}\underline{\phantom{9}608\phantom{99}}\\\phantom{76)99}58\\\end{array}
Find closest multiple of 76 to 666. We see that 8 \times 76 = 608 is the nearest. Now subtract 608 from 666 to get reminder 58. Add 8 to quotient.
\begin{array}{l}\phantom{76)}0068\phantom{9}\\76\overline{)522640}\\\phantom{76)}\underline{\phantom{}456\phantom{999}}\\\phantom{76)9}666\\\phantom{76)}\underline{\phantom{9}608\phantom{99}}\\\phantom{76)99}584\\\end{array}
Use the 5^{th} digit 4 from dividend 522640
\begin{array}{l}\phantom{76)}00687\phantom{10}\\76\overline{)522640}\\\phantom{76)}\underline{\phantom{}456\phantom{999}}\\\phantom{76)9}666\\\phantom{76)}\underline{\phantom{9}608\phantom{99}}\\\phantom{76)99}584\\\phantom{76)}\underline{\phantom{99}532\phantom{9}}\\\phantom{76)999}52\\\end{array}
Find closest multiple of 76 to 584. We see that 7 \times 76 = 532 is the nearest. Now subtract 532 from 584 to get reminder 52. Add 7 to quotient.
\begin{array}{l}\phantom{76)}00687\phantom{11}\\76\overline{)522640}\\\phantom{76)}\underline{\phantom{}456\phantom{999}}\\\phantom{76)9}666\\\phantom{76)}\underline{\phantom{9}608\phantom{99}}\\\phantom{76)99}584\\\phantom{76)}\underline{\phantom{99}532\phantom{9}}\\\phantom{76)999}520\\\end{array}
Use the 6^{th} digit 0 from dividend 522640
\begin{array}{l}\phantom{76)}006876\phantom{12}\\76\overline{)522640}\\\phantom{76)}\underline{\phantom{}456\phantom{999}}\\\phantom{76)9}666\\\phantom{76)}\underline{\phantom{9}608\phantom{99}}\\\phantom{76)99}584\\\phantom{76)}\underline{\phantom{99}532\phantom{9}}\\\phantom{76)999}520\\\phantom{76)}\underline{\phantom{999}456\phantom{}}\\\phantom{76)9999}64\\\end{array}
Find closest multiple of 76 to 520. We see that 6 \times 76 = 456 is the nearest. Now subtract 456 from 520 to get reminder 64. Add 6 to quotient.
\text{Quotient: }6876 \text{Reminder: }64
Since 64 is less than 76, stop the division. The reminder is 64. The topmost line 006876 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6876.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}