Evaluate
\frac{4059}{952}\approx 4.263655462
Factor
\frac{3 ^ {2} \cdot 11 \cdot 41}{2 ^ {3} \cdot 7 \cdot 17} = 4\frac{251}{952} = 4.263655462184874
Share
Copied to clipboard
\frac{74}{17}+\frac{\frac{7}{8}}{\frac{7}{5}}-\frac{5}{7}
Reduce the fraction \frac{518}{119} to lowest terms by extracting and canceling out 7.
\frac{74}{17}+\frac{7}{8}\times \frac{5}{7}-\frac{5}{7}
Divide \frac{7}{8} by \frac{7}{5} by multiplying \frac{7}{8} by the reciprocal of \frac{7}{5}.
\frac{74}{17}+\frac{7\times 5}{8\times 7}-\frac{5}{7}
Multiply \frac{7}{8} times \frac{5}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{74}{17}+\frac{5}{8}-\frac{5}{7}
Cancel out 7 in both numerator and denominator.
\frac{592}{136}+\frac{85}{136}-\frac{5}{7}
Least common multiple of 17 and 8 is 136. Convert \frac{74}{17} and \frac{5}{8} to fractions with denominator 136.
\frac{592+85}{136}-\frac{5}{7}
Since \frac{592}{136} and \frac{85}{136} have the same denominator, add them by adding their numerators.
\frac{677}{136}-\frac{5}{7}
Add 592 and 85 to get 677.
\frac{4739}{952}-\frac{680}{952}
Least common multiple of 136 and 7 is 952. Convert \frac{677}{136} and \frac{5}{7} to fractions with denominator 952.
\frac{4739-680}{952}
Since \frac{4739}{952} and \frac{680}{952} have the same denominator, subtract them by subtracting their numerators.
\frac{4059}{952}
Subtract 680 from 4739 to get 4059.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}