Solve for h
h=-\frac{2r}{3}+\frac{5159}{6\pi r^{2}}
r\neq 0
Share
Copied to clipboard
\frac{5159}{6}=\pi r^{2}h+\frac{2}{3}\pi r^{3}
Use the distributive property to multiply \pi r^{2} by h+\frac{2}{3}r.
\pi r^{2}h+\frac{2}{3}\pi r^{3}=\frac{5159}{6}
Swap sides so that all variable terms are on the left hand side.
\pi r^{2}h=\frac{5159}{6}-\frac{2}{3}\pi r^{3}
Subtract \frac{2}{3}\pi r^{3} from both sides.
\pi r^{2}h=-\frac{2\pi r^{3}}{3}+\frac{5159}{6}
The equation is in standard form.
\frac{\pi r^{2}h}{\pi r^{2}}=\frac{-\frac{2\pi r^{3}}{3}+\frac{5159}{6}}{\pi r^{2}}
Divide both sides by \pi r^{2}.
h=\frac{-\frac{2\pi r^{3}}{3}+\frac{5159}{6}}{\pi r^{2}}
Dividing by \pi r^{2} undoes the multiplication by \pi r^{2}.
h=-\frac{2r}{3}+\frac{5159}{6\pi r^{2}}
Divide \frac{5159}{6}-\frac{2\pi r^{3}}{3} by \pi r^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}