Evaluate
\frac{257}{195}\approx 1.317948718
Factor
\frac{257}{3 \cdot 5 \cdot 13} = 1\frac{62}{195} = 1.317948717948718
Share
Copied to clipboard
\begin{array}{l}\phantom{390)}\phantom{1}\\390\overline{)514}\\\end{array}
Use the 1^{st} digit 5 from dividend 514
\begin{array}{l}\phantom{390)}0\phantom{2}\\390\overline{)514}\\\end{array}
Since 5 is less than 390, use the next digit 1 from dividend 514 and add 0 to the quotient
\begin{array}{l}\phantom{390)}0\phantom{3}\\390\overline{)514}\\\end{array}
Use the 2^{nd} digit 1 from dividend 514
\begin{array}{l}\phantom{390)}00\phantom{4}\\390\overline{)514}\\\end{array}
Since 51 is less than 390, use the next digit 4 from dividend 514 and add 0 to the quotient
\begin{array}{l}\phantom{390)}00\phantom{5}\\390\overline{)514}\\\end{array}
Use the 3^{rd} digit 4 from dividend 514
\begin{array}{l}\phantom{390)}001\phantom{6}\\390\overline{)514}\\\phantom{390)}\underline{\phantom{}390\phantom{}}\\\phantom{390)}124\\\end{array}
Find closest multiple of 390 to 514. We see that 1 \times 390 = 390 is the nearest. Now subtract 390 from 514 to get reminder 124. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }124
Since 124 is less than 390, stop the division. The reminder is 124. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}