Evaluate
\frac{512}{13}\approx 39.384615385
Factor
\frac{2 ^ {9}}{13} = 39\frac{5}{13} = 39.38461538461539
Share
Copied to clipboard
\begin{array}{l}\phantom{13)}\phantom{1}\\13\overline{)512}\\\end{array}
Use the 1^{st} digit 5 from dividend 512
\begin{array}{l}\phantom{13)}0\phantom{2}\\13\overline{)512}\\\end{array}
Since 5 is less than 13, use the next digit 1 from dividend 512 and add 0 to the quotient
\begin{array}{l}\phantom{13)}0\phantom{3}\\13\overline{)512}\\\end{array}
Use the 2^{nd} digit 1 from dividend 512
\begin{array}{l}\phantom{13)}03\phantom{4}\\13\overline{)512}\\\phantom{13)}\underline{\phantom{}39\phantom{9}}\\\phantom{13)}12\\\end{array}
Find closest multiple of 13 to 51. We see that 3 \times 13 = 39 is the nearest. Now subtract 39 from 51 to get reminder 12. Add 3 to quotient.
\begin{array}{l}\phantom{13)}03\phantom{5}\\13\overline{)512}\\\phantom{13)}\underline{\phantom{}39\phantom{9}}\\\phantom{13)}122\\\end{array}
Use the 3^{rd} digit 2 from dividend 512
\begin{array}{l}\phantom{13)}039\phantom{6}\\13\overline{)512}\\\phantom{13)}\underline{\phantom{}39\phantom{9}}\\\phantom{13)}122\\\phantom{13)}\underline{\phantom{}117\phantom{}}\\\phantom{13)99}5\\\end{array}
Find closest multiple of 13 to 122. We see that 9 \times 13 = 117 is the nearest. Now subtract 117 from 122 to get reminder 5. Add 9 to quotient.
\text{Quotient: }39 \text{Reminder: }5
Since 5 is less than 13, stop the division. The reminder is 5. The topmost line 039 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 39.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}