Evaluate
\frac{51}{20}=2.55
Factor
\frac{3 \cdot 17}{2 ^ {2} \cdot 5} = 2\frac{11}{20} = 2.55
Share
Copied to clipboard
\begin{array}{l}\phantom{20)}\phantom{1}\\20\overline{)51}\\\end{array}
Use the 1^{st} digit 5 from dividend 51
\begin{array}{l}\phantom{20)}0\phantom{2}\\20\overline{)51}\\\end{array}
Since 5 is less than 20, use the next digit 1 from dividend 51 and add 0 to the quotient
\begin{array}{l}\phantom{20)}0\phantom{3}\\20\overline{)51}\\\end{array}
Use the 2^{nd} digit 1 from dividend 51
\begin{array}{l}\phantom{20)}02\phantom{4}\\20\overline{)51}\\\phantom{20)}\underline{\phantom{}40\phantom{}}\\\phantom{20)}11\\\end{array}
Find closest multiple of 20 to 51. We see that 2 \times 20 = 40 is the nearest. Now subtract 40 from 51 to get reminder 11. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }11
Since 11 is less than 20, stop the division. The reminder is 11. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}