Evaluate
\frac{51}{16}=3.1875
Factor
\frac{3 \cdot 17}{2 ^ {4}} = 3\frac{3}{16} = 3.1875
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)51}\\\end{array}
Use the 1^{st} digit 5 from dividend 51
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)51}\\\end{array}
Since 5 is less than 16, use the next digit 1 from dividend 51 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)51}\\\end{array}
Use the 2^{nd} digit 1 from dividend 51
\begin{array}{l}\phantom{16)}03\phantom{4}\\16\overline{)51}\\\phantom{16)}\underline{\phantom{}48\phantom{}}\\\phantom{16)9}3\\\end{array}
Find closest multiple of 16 to 51. We see that 3 \times 16 = 48 is the nearest. Now subtract 48 from 51 to get reminder 3. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }3
Since 3 is less than 16, stop the division. The reminder is 3. The topmost line 03 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}