Evaluate
\frac{43}{14}\approx 3.071428571
Factor
\frac{43}{2 \cdot 7} = 3\frac{1}{14} = 3.0714285714285716
Share
Copied to clipboard
\frac{51}{14}-\frac{4.6\times 20}{8\times 20+1}
Divide 4.6 by \frac{8\times 20+1}{20} by multiplying 4.6 by the reciprocal of \frac{8\times 20+1}{20}.
\frac{51}{14}-\frac{92}{8\times 20+1}
Multiply 4.6 and 20 to get 92.
\frac{51}{14}-\frac{92}{160+1}
Multiply 8 and 20 to get 160.
\frac{51}{14}-\frac{92}{161}
Add 160 and 1 to get 161.
\frac{51}{14}-\frac{4}{7}
Reduce the fraction \frac{92}{161} to lowest terms by extracting and canceling out 23.
\frac{51}{14}-\frac{8}{14}
Least common multiple of 14 and 7 is 14. Convert \frac{51}{14} and \frac{4}{7} to fractions with denominator 14.
\frac{51-8}{14}
Since \frac{51}{14} and \frac{8}{14} have the same denominator, subtract them by subtracting their numerators.
\frac{43}{14}
Subtract 8 from 51 to get 43.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}