Evaluate
\frac{50164091}{20}=2508204.55
Factor
\frac{439 \cdot 114269}{2 ^ {2} \cdot 5} = 2508204\frac{11}{20} = 2508204.55
Share
Copied to clipboard
\begin{array}{l}\phantom{20)}\phantom{1}\\20\overline{)50164091}\\\end{array}
Use the 1^{st} digit 5 from dividend 50164091
\begin{array}{l}\phantom{20)}0\phantom{2}\\20\overline{)50164091}\\\end{array}
Since 5 is less than 20, use the next digit 0 from dividend 50164091 and add 0 to the quotient
\begin{array}{l}\phantom{20)}0\phantom{3}\\20\overline{)50164091}\\\end{array}
Use the 2^{nd} digit 0 from dividend 50164091
\begin{array}{l}\phantom{20)}02\phantom{4}\\20\overline{)50164091}\\\phantom{20)}\underline{\phantom{}40\phantom{999999}}\\\phantom{20)}10\\\end{array}
Find closest multiple of 20 to 50. We see that 2 \times 20 = 40 is the nearest. Now subtract 40 from 50 to get reminder 10. Add 2 to quotient.
\begin{array}{l}\phantom{20)}02\phantom{5}\\20\overline{)50164091}\\\phantom{20)}\underline{\phantom{}40\phantom{999999}}\\\phantom{20)}101\\\end{array}
Use the 3^{rd} digit 1 from dividend 50164091
\begin{array}{l}\phantom{20)}025\phantom{6}\\20\overline{)50164091}\\\phantom{20)}\underline{\phantom{}40\phantom{999999}}\\\phantom{20)}101\\\phantom{20)}\underline{\phantom{}100\phantom{99999}}\\\phantom{20)99}1\\\end{array}
Find closest multiple of 20 to 101. We see that 5 \times 20 = 100 is the nearest. Now subtract 100 from 101 to get reminder 1. Add 5 to quotient.
\begin{array}{l}\phantom{20)}025\phantom{7}\\20\overline{)50164091}\\\phantom{20)}\underline{\phantom{}40\phantom{999999}}\\\phantom{20)}101\\\phantom{20)}\underline{\phantom{}100\phantom{99999}}\\\phantom{20)99}16\\\end{array}
Use the 4^{th} digit 6 from dividend 50164091
\begin{array}{l}\phantom{20)}0250\phantom{8}\\20\overline{)50164091}\\\phantom{20)}\underline{\phantom{}40\phantom{999999}}\\\phantom{20)}101\\\phantom{20)}\underline{\phantom{}100\phantom{99999}}\\\phantom{20)99}16\\\end{array}
Since 16 is less than 20, use the next digit 4 from dividend 50164091 and add 0 to the quotient
\begin{array}{l}\phantom{20)}0250\phantom{9}\\20\overline{)50164091}\\\phantom{20)}\underline{\phantom{}40\phantom{999999}}\\\phantom{20)}101\\\phantom{20)}\underline{\phantom{}100\phantom{99999}}\\\phantom{20)99}164\\\end{array}
Use the 5^{th} digit 4 from dividend 50164091
\begin{array}{l}\phantom{20)}02508\phantom{10}\\20\overline{)50164091}\\\phantom{20)}\underline{\phantom{}40\phantom{999999}}\\\phantom{20)}101\\\phantom{20)}\underline{\phantom{}100\phantom{99999}}\\\phantom{20)99}164\\\phantom{20)}\underline{\phantom{99}160\phantom{999}}\\\phantom{20)9999}4\\\end{array}
Find closest multiple of 20 to 164. We see that 8 \times 20 = 160 is the nearest. Now subtract 160 from 164 to get reminder 4. Add 8 to quotient.
\begin{array}{l}\phantom{20)}02508\phantom{11}\\20\overline{)50164091}\\\phantom{20)}\underline{\phantom{}40\phantom{999999}}\\\phantom{20)}101\\\phantom{20)}\underline{\phantom{}100\phantom{99999}}\\\phantom{20)99}164\\\phantom{20)}\underline{\phantom{99}160\phantom{999}}\\\phantom{20)9999}40\\\end{array}
Use the 6^{th} digit 0 from dividend 50164091
\begin{array}{l}\phantom{20)}025082\phantom{12}\\20\overline{)50164091}\\\phantom{20)}\underline{\phantom{}40\phantom{999999}}\\\phantom{20)}101\\\phantom{20)}\underline{\phantom{}100\phantom{99999}}\\\phantom{20)99}164\\\phantom{20)}\underline{\phantom{99}160\phantom{999}}\\\phantom{20)9999}40\\\phantom{20)}\underline{\phantom{9999}40\phantom{99}}\\\phantom{20)999999}0\\\end{array}
Find closest multiple of 20 to 40. We see that 2 \times 20 = 40 is the nearest. Now subtract 40 from 40 to get reminder 0. Add 2 to quotient.
\begin{array}{l}\phantom{20)}025082\phantom{13}\\20\overline{)50164091}\\\phantom{20)}\underline{\phantom{}40\phantom{999999}}\\\phantom{20)}101\\\phantom{20)}\underline{\phantom{}100\phantom{99999}}\\\phantom{20)99}164\\\phantom{20)}\underline{\phantom{99}160\phantom{999}}\\\phantom{20)9999}40\\\phantom{20)}\underline{\phantom{9999}40\phantom{99}}\\\phantom{20)999999}9\\\end{array}
Use the 7^{th} digit 9 from dividend 50164091
\begin{array}{l}\phantom{20)}0250820\phantom{14}\\20\overline{)50164091}\\\phantom{20)}\underline{\phantom{}40\phantom{999999}}\\\phantom{20)}101\\\phantom{20)}\underline{\phantom{}100\phantom{99999}}\\\phantom{20)99}164\\\phantom{20)}\underline{\phantom{99}160\phantom{999}}\\\phantom{20)9999}40\\\phantom{20)}\underline{\phantom{9999}40\phantom{99}}\\\phantom{20)999999}9\\\end{array}
Since 9 is less than 20, use the next digit 1 from dividend 50164091 and add 0 to the quotient
\begin{array}{l}\phantom{20)}0250820\phantom{15}\\20\overline{)50164091}\\\phantom{20)}\underline{\phantom{}40\phantom{999999}}\\\phantom{20)}101\\\phantom{20)}\underline{\phantom{}100\phantom{99999}}\\\phantom{20)99}164\\\phantom{20)}\underline{\phantom{99}160\phantom{999}}\\\phantom{20)9999}40\\\phantom{20)}\underline{\phantom{9999}40\phantom{99}}\\\phantom{20)999999}91\\\end{array}
Use the 8^{th} digit 1 from dividend 50164091
\begin{array}{l}\phantom{20)}02508204\phantom{16}\\20\overline{)50164091}\\\phantom{20)}\underline{\phantom{}40\phantom{999999}}\\\phantom{20)}101\\\phantom{20)}\underline{\phantom{}100\phantom{99999}}\\\phantom{20)99}164\\\phantom{20)}\underline{\phantom{99}160\phantom{999}}\\\phantom{20)9999}40\\\phantom{20)}\underline{\phantom{9999}40\phantom{99}}\\\phantom{20)999999}91\\\phantom{20)}\underline{\phantom{999999}80\phantom{}}\\\phantom{20)999999}11\\\end{array}
Find closest multiple of 20 to 91. We see that 4 \times 20 = 80 is the nearest. Now subtract 80 from 91 to get reminder 11. Add 4 to quotient.
\text{Quotient: }2508204 \text{Reminder: }11
Since 11 is less than 20, stop the division. The reminder is 11. The topmost line 02508204 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2508204.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}