Evaluate
\frac{250}{7}\approx 35.714285714
Factor
\frac{2 \cdot 5 ^ {3}}{7} = 35\frac{5}{7} = 35.714285714285715
Share
Copied to clipboard
\begin{array}{l}\phantom{14)}\phantom{1}\\14\overline{)500}\\\end{array}
Use the 1^{st} digit 5 from dividend 500
\begin{array}{l}\phantom{14)}0\phantom{2}\\14\overline{)500}\\\end{array}
Since 5 is less than 14, use the next digit 0 from dividend 500 and add 0 to the quotient
\begin{array}{l}\phantom{14)}0\phantom{3}\\14\overline{)500}\\\end{array}
Use the 2^{nd} digit 0 from dividend 500
\begin{array}{l}\phantom{14)}03\phantom{4}\\14\overline{)500}\\\phantom{14)}\underline{\phantom{}42\phantom{9}}\\\phantom{14)9}8\\\end{array}
Find closest multiple of 14 to 50. We see that 3 \times 14 = 42 is the nearest. Now subtract 42 from 50 to get reminder 8. Add 3 to quotient.
\begin{array}{l}\phantom{14)}03\phantom{5}\\14\overline{)500}\\\phantom{14)}\underline{\phantom{}42\phantom{9}}\\\phantom{14)9}80\\\end{array}
Use the 3^{rd} digit 0 from dividend 500
\begin{array}{l}\phantom{14)}035\phantom{6}\\14\overline{)500}\\\phantom{14)}\underline{\phantom{}42\phantom{9}}\\\phantom{14)9}80\\\phantom{14)}\underline{\phantom{9}70\phantom{}}\\\phantom{14)9}10\\\end{array}
Find closest multiple of 14 to 80. We see that 5 \times 14 = 70 is the nearest. Now subtract 70 from 80 to get reminder 10. Add 5 to quotient.
\text{Quotient: }35 \text{Reminder: }10
Since 10 is less than 14, stop the division. The reminder is 10. The topmost line 035 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}