Solve for x
x=-20
Graph
Share
Copied to clipboard
\frac{18}{212-32}=\frac{x-\left(-50\right)}{250-\left(-50\right)}
Subtract 32 from 50 to get 18.
\frac{18}{180}=\frac{x-\left(-50\right)}{250-\left(-50\right)}
Subtract 32 from 212 to get 180.
\frac{1}{10}=\frac{x-\left(-50\right)}{250-\left(-50\right)}
Reduce the fraction \frac{18}{180} to lowest terms by extracting and canceling out 18.
\frac{1}{10}=\frac{x+50}{250-\left(-50\right)}
The opposite of -50 is 50.
\frac{1}{10}=\frac{x+50}{250+50}
The opposite of -50 is 50.
\frac{1}{10}=\frac{x+50}{300}
Add 250 and 50 to get 300.
\frac{1}{10}=\frac{1}{300}x+\frac{1}{6}
Divide each term of x+50 by 300 to get \frac{1}{300}x+\frac{1}{6}.
\frac{1}{300}x+\frac{1}{6}=\frac{1}{10}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{300}x=\frac{1}{10}-\frac{1}{6}
Subtract \frac{1}{6} from both sides.
\frac{1}{300}x=\frac{3}{30}-\frac{5}{30}
Least common multiple of 10 and 6 is 30. Convert \frac{1}{10} and \frac{1}{6} to fractions with denominator 30.
\frac{1}{300}x=\frac{3-5}{30}
Since \frac{3}{30} and \frac{5}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{300}x=\frac{-2}{30}
Subtract 5 from 3 to get -2.
\frac{1}{300}x=-\frac{1}{15}
Reduce the fraction \frac{-2}{30} to lowest terms by extracting and canceling out 2.
x=-\frac{1}{15}\times 300
Multiply both sides by 300, the reciprocal of \frac{1}{300}.
x=\frac{-300}{15}
Express -\frac{1}{15}\times 300 as a single fraction.
x=-20
Divide -300 by 15 to get -20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}