Solve for h
h=\frac{\sqrt{155056672801}}{36040}+\frac{1666}{265}\approx 17.212773631
h=-\frac{\sqrt{155056672801}}{36040}+\frac{1666}{265}\approx -4.639188725
Share
Copied to clipboard
\frac{490000}{17}+34\times 9800h=26500\left(h^{2}-8.875^{2}\right)
Multiply \frac{50}{17} and 9800 to get \frac{490000}{17}.
\frac{490000}{17}+333200h=26500\left(h^{2}-8.875^{2}\right)
Multiply 34 and 9800 to get 333200.
\frac{490000}{17}+333200h=26500\left(h^{2}-78.765625\right)
Calculate 8.875 to the power of 2 and get 78.765625.
\frac{490000}{17}+333200h=26500h^{2}-2087289.0625
Use the distributive property to multiply 26500 by h^{2}-78.765625.
\frac{490000}{17}+333200h-26500h^{2}=-2087289.0625
Subtract 26500h^{2} from both sides.
\frac{490000}{17}+333200h-26500h^{2}+2087289.0625=0
Add 2087289.0625 to both sides.
\frac{575582625}{272}+333200h-26500h^{2}=0
Add \frac{490000}{17} and 2087289.0625 to get \frac{575582625}{272}.
-26500h^{2}+333200h+\frac{575582625}{272}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
h=\frac{-333200±\sqrt{333200^{2}-4\left(-26500\right)\times \frac{575582625}{272}}}{2\left(-26500\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -26500 for a, 333200 for b, and \frac{575582625}{272} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{-333200±\sqrt{111022240000-4\left(-26500\right)\times \frac{575582625}{272}}}{2\left(-26500\right)}
Square 333200.
h=\frac{-333200±\sqrt{111022240000+106000\times \frac{575582625}{272}}}{2\left(-26500\right)}
Multiply -4 times -26500.
h=\frac{-333200±\sqrt{111022240000+\frac{3813234890625}{17}}}{2\left(-26500\right)}
Multiply 106000 times \frac{575582625}{272}.
h=\frac{-333200±\sqrt{\frac{5700612970625}{17}}}{2\left(-26500\right)}
Add 111022240000 to \frac{3813234890625}{17}.
h=\frac{-333200±\frac{25\sqrt{155056672801}}{17}}{2\left(-26500\right)}
Take the square root of \frac{5700612970625}{17}.
h=\frac{-333200±\frac{25\sqrt{155056672801}}{17}}{-53000}
Multiply 2 times -26500.
h=\frac{\frac{25\sqrt{155056672801}}{17}-333200}{-53000}
Now solve the equation h=\frac{-333200±\frac{25\sqrt{155056672801}}{17}}{-53000} when ± is plus. Add -333200 to \frac{25\sqrt{155056672801}}{17}.
h=-\frac{\sqrt{155056672801}}{36040}+\frac{1666}{265}
Divide -333200+\frac{25\sqrt{155056672801}}{17} by -53000.
h=\frac{-\frac{25\sqrt{155056672801}}{17}-333200}{-53000}
Now solve the equation h=\frac{-333200±\frac{25\sqrt{155056672801}}{17}}{-53000} when ± is minus. Subtract \frac{25\sqrt{155056672801}}{17} from -333200.
h=\frac{\sqrt{155056672801}}{36040}+\frac{1666}{265}
Divide -333200-\frac{25\sqrt{155056672801}}{17} by -53000.
h=-\frac{\sqrt{155056672801}}{36040}+\frac{1666}{265} h=\frac{\sqrt{155056672801}}{36040}+\frac{1666}{265}
The equation is now solved.
\frac{490000}{17}+34\times 9800h=26500\left(h^{2}-8.875^{2}\right)
Multiply \frac{50}{17} and 9800 to get \frac{490000}{17}.
\frac{490000}{17}+333200h=26500\left(h^{2}-8.875^{2}\right)
Multiply 34 and 9800 to get 333200.
\frac{490000}{17}+333200h=26500\left(h^{2}-78.765625\right)
Calculate 8.875 to the power of 2 and get 78.765625.
\frac{490000}{17}+333200h=26500h^{2}-2087289.0625
Use the distributive property to multiply 26500 by h^{2}-78.765625.
\frac{490000}{17}+333200h-26500h^{2}=-2087289.0625
Subtract 26500h^{2} from both sides.
333200h-26500h^{2}=-2087289.0625-\frac{490000}{17}
Subtract \frac{490000}{17} from both sides.
333200h-26500h^{2}=-\frac{575582625}{272}
Subtract \frac{490000}{17} from -2087289.0625 to get -\frac{575582625}{272}.
-26500h^{2}+333200h=-\frac{575582625}{272}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-26500h^{2}+333200h}{-26500}=-\frac{\frac{575582625}{272}}{-26500}
Divide both sides by -26500.
h^{2}+\frac{333200}{-26500}h=-\frac{\frac{575582625}{272}}{-26500}
Dividing by -26500 undoes the multiplication by -26500.
h^{2}-\frac{3332}{265}h=-\frac{\frac{575582625}{272}}{-26500}
Reduce the fraction \frac{333200}{-26500} to lowest terms by extracting and canceling out 100.
h^{2}-\frac{3332}{265}h=\frac{4604661}{57664}
Divide -\frac{575582625}{272} by -26500.
h^{2}-\frac{3332}{265}h+\left(-\frac{1666}{265}\right)^{2}=\frac{4604661}{57664}+\left(-\frac{1666}{265}\right)^{2}
Divide -\frac{3332}{265}, the coefficient of the x term, by 2 to get -\frac{1666}{265}. Then add the square of -\frac{1666}{265} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
h^{2}-\frac{3332}{265}h+\frac{2775556}{70225}=\frac{4604661}{57664}+\frac{2775556}{70225}
Square -\frac{1666}{265} by squaring both the numerator and the denominator of the fraction.
h^{2}-\frac{3332}{265}h+\frac{2775556}{70225}=\frac{9120980753}{76404800}
Add \frac{4604661}{57664} to \frac{2775556}{70225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(h-\frac{1666}{265}\right)^{2}=\frac{9120980753}{76404800}
Factor h^{2}-\frac{3332}{265}h+\frac{2775556}{70225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(h-\frac{1666}{265}\right)^{2}}=\sqrt{\frac{9120980753}{76404800}}
Take the square root of both sides of the equation.
h-\frac{1666}{265}=\frac{\sqrt{155056672801}}{36040} h-\frac{1666}{265}=-\frac{\sqrt{155056672801}}{36040}
Simplify.
h=\frac{\sqrt{155056672801}}{36040}+\frac{1666}{265} h=-\frac{\sqrt{155056672801}}{36040}+\frac{1666}{265}
Add \frac{1666}{265} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}