Solve for x
x = \frac{401}{18} = 22\frac{5}{18} \approx 22.277777778
Graph
Share
Copied to clipboard
10\times 50=9\left(2x+11\right)
Variable x cannot be equal to -\frac{11}{2} since division by zero is not defined. Multiply both sides of the equation by 10\left(2x+11\right), the least common multiple of 11+2x,10.
500=9\left(2x+11\right)
Multiply 10 and 50 to get 500.
500=18x+99
Use the distributive property to multiply 9 by 2x+11.
18x+99=500
Swap sides so that all variable terms are on the left hand side.
18x=500-99
Subtract 99 from both sides.
18x=401
Subtract 99 from 500 to get 401.
x=\frac{401}{18}
Divide both sides by 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}