Skip to main content
Evaluate
Tick mark Image

Share

\frac{50\times \frac{\sqrt{2}}{2}}{70-50\sin(45)}
Get the value of \cos(45) from trigonometric values table.
\frac{25\sqrt{2}}{70-50\sin(45)}
Cancel out 2, the greatest common factor in 50 and 2.
\frac{25\sqrt{2}}{70-50\times \frac{\sqrt{2}}{2}}
Get the value of \sin(45) from trigonometric values table.
\frac{25\sqrt{2}}{70-25\sqrt{2}}
Cancel out 2, the greatest common factor in 50 and 2.
\frac{25\sqrt{2}\left(70+25\sqrt{2}\right)}{\left(70-25\sqrt{2}\right)\left(70+25\sqrt{2}\right)}
Rationalize the denominator of \frac{25\sqrt{2}}{70-25\sqrt{2}} by multiplying numerator and denominator by 70+25\sqrt{2}.
\frac{25\sqrt{2}\left(70+25\sqrt{2}\right)}{70^{2}-\left(-25\sqrt{2}\right)^{2}}
Consider \left(70-25\sqrt{2}\right)\left(70+25\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{25\sqrt{2}\left(70+25\sqrt{2}\right)}{4900-\left(-25\sqrt{2}\right)^{2}}
Calculate 70 to the power of 2 and get 4900.
\frac{25\sqrt{2}\left(70+25\sqrt{2}\right)}{4900-\left(-25\right)^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(-25\sqrt{2}\right)^{2}.
\frac{25\sqrt{2}\left(70+25\sqrt{2}\right)}{4900-625\left(\sqrt{2}\right)^{2}}
Calculate -25 to the power of 2 and get 625.
\frac{25\sqrt{2}\left(70+25\sqrt{2}\right)}{4900-625\times 2}
The square of \sqrt{2} is 2.
\frac{25\sqrt{2}\left(70+25\sqrt{2}\right)}{4900-1250}
Multiply 625 and 2 to get 1250.
\frac{25\sqrt{2}\left(70+25\sqrt{2}\right)}{3650}
Subtract 1250 from 4900 to get 3650.
\frac{1}{146}\sqrt{2}\left(70+25\sqrt{2}\right)
Divide 25\sqrt{2}\left(70+25\sqrt{2}\right) by 3650 to get \frac{1}{146}\sqrt{2}\left(70+25\sqrt{2}\right).
\frac{35}{73}\sqrt{2}+\frac{25}{146}\left(\sqrt{2}\right)^{2}
Use the distributive property to multiply \frac{1}{146}\sqrt{2} by 70+25\sqrt{2}.
\frac{35}{73}\sqrt{2}+\frac{25}{146}\times 2
The square of \sqrt{2} is 2.
\frac{35}{73}\sqrt{2}+\frac{25}{73}
Multiply \frac{25}{146} and 2 to get \frac{25}{73}.