Evaluate
\frac{4165}{2727}\approx 1.527319399
Factor
\frac{5 \cdot 17 \cdot 7 ^ {2}}{101 \cdot 3 ^ {3}} = 1\frac{1438}{2727} = 1.5273193986065272
Share
Copied to clipboard
\frac{595}{2727}+\frac{11.9}{27.27}+\frac{23.8}{27.27}
Expand \frac{5.95}{27.27} by multiplying both numerator and the denominator by 100.
\frac{595}{2727}+\frac{1190}{2727}+\frac{23.8}{27.27}
Expand \frac{11.9}{27.27} by multiplying both numerator and the denominator by 100.
\frac{595+1190}{2727}+\frac{23.8}{27.27}
Since \frac{595}{2727} and \frac{1190}{2727} have the same denominator, add them by adding their numerators.
\frac{1785}{2727}+\frac{23.8}{27.27}
Add 595 and 1190 to get 1785.
\frac{595}{909}+\frac{23.8}{27.27}
Reduce the fraction \frac{1785}{2727} to lowest terms by extracting and canceling out 3.
\frac{595}{909}+\frac{2380}{2727}
Expand \frac{23.8}{27.27} by multiplying both numerator and the denominator by 100.
\frac{1785}{2727}+\frac{2380}{2727}
Least common multiple of 909 and 2727 is 2727. Convert \frac{595}{909} and \frac{2380}{2727} to fractions with denominator 2727.
\frac{1785+2380}{2727}
Since \frac{1785}{2727} and \frac{2380}{2727} have the same denominator, add them by adding their numerators.
\frac{4165}{2727}
Add 1785 and 2380 to get 4165.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}