Solve for y
y\leq \frac{24}{25}
Graph
Share
Copied to clipboard
4\left(5y-2\right)\leq -5y+16
Multiply both sides of the equation by 16, the least common multiple of 4,16. Since 16 is positive, the inequality direction remains the same.
20y-8\leq -5y+16
Use the distributive property to multiply 4 by 5y-2.
20y-8+5y\leq 16
Add 5y to both sides.
25y-8\leq 16
Combine 20y and 5y to get 25y.
25y\leq 16+8
Add 8 to both sides.
25y\leq 24
Add 16 and 8 to get 24.
y\leq \frac{24}{25}
Divide both sides by 25. Since 25 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}