Evaluate
\frac{4x^{2}+7y^{2}}{6xy}
Factor
\frac{4x^{2}+7y^{2}}{6xy}
Share
Copied to clipboard
\frac{5y}{4x}+\frac{2x}{3y}-\frac{y}{12x}
Cancel out y in both numerator and denominator.
\frac{5y\times 3y}{12xy}+\frac{2x\times 4x}{12xy}-\frac{y}{12x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4x and 3y is 12xy. Multiply \frac{5y}{4x} times \frac{3y}{3y}. Multiply \frac{2x}{3y} times \frac{4x}{4x}.
\frac{5y\times 3y+2x\times 4x}{12xy}-\frac{y}{12x}
Since \frac{5y\times 3y}{12xy} and \frac{2x\times 4x}{12xy} have the same denominator, add them by adding their numerators.
\frac{15y^{2}+8x^{2}}{12xy}-\frac{y}{12x}
Do the multiplications in 5y\times 3y+2x\times 4x.
\frac{15y^{2}+8x^{2}}{12xy}-\frac{yy}{12xy}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 12xy and 12x is 12xy. Multiply \frac{y}{12x} times \frac{y}{y}.
\frac{15y^{2}+8x^{2}-yy}{12xy}
Since \frac{15y^{2}+8x^{2}}{12xy} and \frac{yy}{12xy} have the same denominator, subtract them by subtracting their numerators.
\frac{15y^{2}+8x^{2}-y^{2}}{12xy}
Do the multiplications in 15y^{2}+8x^{2}-yy.
\frac{14y^{2}+8x^{2}}{12xy}
Combine like terms in 15y^{2}+8x^{2}-y^{2}.
\frac{2\left(4x^{2}+7y^{2}\right)}{12xy}
Factor the expressions that are not already factored in \frac{14y^{2}+8x^{2}}{12xy}.
\frac{4x^{2}+7y^{2}}{6xy}
Cancel out 2 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}