Solve for x
x=\frac{5y}{6}+\frac{1}{2}
y\neq -\frac{3}{5}
Solve for y
y=\frac{6x-3}{5}
x\neq 0
Graph
Share
Copied to clipboard
5y+3=6x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
6x=5y+3
Swap sides so that all variable terms are on the left hand side.
\frac{6x}{6}=\frac{5y+3}{6}
Divide both sides by 6.
x=\frac{5y+3}{6}
Dividing by 6 undoes the multiplication by 6.
x=\frac{5y}{6}+\frac{1}{2}
Divide 5y+3 by 6.
x=\frac{5y}{6}+\frac{1}{2}\text{, }x\neq 0
Variable x cannot be equal to 0.
5y+3=6x
Multiply both sides of the equation by x.
5y=6x-3
Subtract 3 from both sides.
\frac{5y}{5}=\frac{6x-3}{5}
Divide both sides by 5.
y=\frac{6x-3}{5}
Dividing by 5 undoes the multiplication by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}