Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Share

\frac{\frac{5x\left(y-1\right)}{\left(y-1\right)\left(2y+3\right)}\times \frac{4y+6}{5x^{2}-10xy+5y^{2}}}{\frac{x^{2}-xy}{x^{2}-2xy+y^{2}}}
Factor the expressions that are not already factored in \frac{5xy-5x}{2y^{2}+y-3}.
\frac{\frac{5x}{2y+3}\times \frac{4y+6}{5x^{2}-10xy+5y^{2}}}{\frac{x^{2}-xy}{x^{2}-2xy+y^{2}}}
Cancel out y-1 in both numerator and denominator.
\frac{\frac{5x\left(4y+6\right)}{\left(2y+3\right)\left(5x^{2}-10xy+5y^{2}\right)}}{\frac{x^{2}-xy}{x^{2}-2xy+y^{2}}}
Multiply \frac{5x}{2y+3} times \frac{4y+6}{5x^{2}-10xy+5y^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{5x\left(4y+6\right)}{\left(2y+3\right)\left(5x^{2}-10xy+5y^{2}\right)}}{\frac{x\left(x-y\right)}{\left(x-y\right)^{2}}}
Factor the expressions that are not already factored in \frac{x^{2}-xy}{x^{2}-2xy+y^{2}}.
\frac{\frac{5x\left(4y+6\right)}{\left(2y+3\right)\left(5x^{2}-10xy+5y^{2}\right)}}{\frac{x}{x-y}}
Cancel out x-y in both numerator and denominator.
\frac{5x\left(4y+6\right)\left(x-y\right)}{\left(2y+3\right)\left(5x^{2}-10xy+5y^{2}\right)x}
Divide \frac{5x\left(4y+6\right)}{\left(2y+3\right)\left(5x^{2}-10xy+5y^{2}\right)} by \frac{x}{x-y} by multiplying \frac{5x\left(4y+6\right)}{\left(2y+3\right)\left(5x^{2}-10xy+5y^{2}\right)} by the reciprocal of \frac{x}{x-y}.
\frac{5\left(4y+6\right)\left(x-y\right)}{\left(2y+3\right)\left(5x^{2}-10xy+5y^{2}\right)}
Cancel out x in both numerator and denominator.
\frac{2\times 5\left(2y+3\right)\left(x-y\right)}{5\left(2y+3\right)\left(x-y\right)^{2}}
Factor the expressions that are not already factored.
\frac{2}{x-y}
Cancel out 5\left(2y+3\right)\left(x-y\right) in both numerator and denominator.
\frac{\frac{5x\left(y-1\right)}{\left(y-1\right)\left(2y+3\right)}\times \frac{4y+6}{5x^{2}-10xy+5y^{2}}}{\frac{x^{2}-xy}{x^{2}-2xy+y^{2}}}
Factor the expressions that are not already factored in \frac{5xy-5x}{2y^{2}+y-3}.
\frac{\frac{5x}{2y+3}\times \frac{4y+6}{5x^{2}-10xy+5y^{2}}}{\frac{x^{2}-xy}{x^{2}-2xy+y^{2}}}
Cancel out y-1 in both numerator and denominator.
\frac{\frac{5x\left(4y+6\right)}{\left(2y+3\right)\left(5x^{2}-10xy+5y^{2}\right)}}{\frac{x^{2}-xy}{x^{2}-2xy+y^{2}}}
Multiply \frac{5x}{2y+3} times \frac{4y+6}{5x^{2}-10xy+5y^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{5x\left(4y+6\right)}{\left(2y+3\right)\left(5x^{2}-10xy+5y^{2}\right)}}{\frac{x\left(x-y\right)}{\left(x-y\right)^{2}}}
Factor the expressions that are not already factored in \frac{x^{2}-xy}{x^{2}-2xy+y^{2}}.
\frac{\frac{5x\left(4y+6\right)}{\left(2y+3\right)\left(5x^{2}-10xy+5y^{2}\right)}}{\frac{x}{x-y}}
Cancel out x-y in both numerator and denominator.
\frac{5x\left(4y+6\right)\left(x-y\right)}{\left(2y+3\right)\left(5x^{2}-10xy+5y^{2}\right)x}
Divide \frac{5x\left(4y+6\right)}{\left(2y+3\right)\left(5x^{2}-10xy+5y^{2}\right)} by \frac{x}{x-y} by multiplying \frac{5x\left(4y+6\right)}{\left(2y+3\right)\left(5x^{2}-10xy+5y^{2}\right)} by the reciprocal of \frac{x}{x-y}.
\frac{5\left(4y+6\right)\left(x-y\right)}{\left(2y+3\right)\left(5x^{2}-10xy+5y^{2}\right)}
Cancel out x in both numerator and denominator.
\frac{2\times 5\left(2y+3\right)\left(x-y\right)}{5\left(2y+3\right)\left(x-y\right)^{2}}
Factor the expressions that are not already factored.
\frac{2}{x-y}
Cancel out 5\left(2y+3\right)\left(x-y\right) in both numerator and denominator.