Solve for x
x=-2
Graph
Share
Copied to clipboard
\frac{3\left(5x-6\right)}{12}+1-\frac{4\left(2x+1\right)}{12}=x
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 3 is 12. Multiply \frac{5x-6}{4} times \frac{3}{3}. Multiply \frac{2x+1}{3} times \frac{4}{4}.
\frac{3\left(5x-6\right)-4\left(2x+1\right)}{12}+1=x
Since \frac{3\left(5x-6\right)}{12} and \frac{4\left(2x+1\right)}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{15x-18-8x-4}{12}+1=x
Do the multiplications in 3\left(5x-6\right)-4\left(2x+1\right).
\frac{7x-22}{12}+1=x
Combine like terms in 15x-18-8x-4.
\frac{7}{12}x-\frac{11}{6}+1=x
Divide each term of 7x-22 by 12 to get \frac{7}{12}x-\frac{11}{6}.
\frac{7}{12}x-\frac{11}{6}+\frac{6}{6}=x
Convert 1 to fraction \frac{6}{6}.
\frac{7}{12}x+\frac{-11+6}{6}=x
Since -\frac{11}{6} and \frac{6}{6} have the same denominator, add them by adding their numerators.
\frac{7}{12}x-\frac{5}{6}=x
Add -11 and 6 to get -5.
\frac{7}{12}x-\frac{5}{6}-x=0
Subtract x from both sides.
-\frac{5}{12}x-\frac{5}{6}=0
Combine \frac{7}{12}x and -x to get -\frac{5}{12}x.
-\frac{5}{12}x=\frac{5}{6}
Add \frac{5}{6} to both sides. Anything plus zero gives itself.
x=\frac{5}{6}\left(-\frac{12}{5}\right)
Multiply both sides by -\frac{12}{5}, the reciprocal of -\frac{5}{12}.
x=\frac{5\left(-12\right)}{6\times 5}
Multiply \frac{5}{6} times -\frac{12}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-12}{6}
Cancel out 5 in both numerator and denominator.
x=-2
Divide -12 by 6 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}