Solve for x
x = -\frac{19}{6} = -3\frac{1}{6} \approx -3.166666667
Graph
Share
Copied to clipboard
6\left(5x-4\right)+2\times 2-3\left(2x-7\right)=18\left(x-1\right)
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by 6\left(x-1\right), the least common multiple of x-1,3x-3,2x-2.
30x-24+2\times 2-3\left(2x-7\right)=18\left(x-1\right)
Use the distributive property to multiply 6 by 5x-4.
30x-24+4-3\left(2x-7\right)=18\left(x-1\right)
Multiply 2 and 2 to get 4.
30x-20-3\left(2x-7\right)=18\left(x-1\right)
Add -24 and 4 to get -20.
30x-20-6x+21=18\left(x-1\right)
Use the distributive property to multiply -3 by 2x-7.
24x-20+21=18\left(x-1\right)
Combine 30x and -6x to get 24x.
24x+1=18\left(x-1\right)
Add -20 and 21 to get 1.
24x+1=18x-18
Use the distributive property to multiply 18 by x-1.
24x+1-18x=-18
Subtract 18x from both sides.
6x+1=-18
Combine 24x and -18x to get 6x.
6x=-18-1
Subtract 1 from both sides.
6x=-19
Subtract 1 from -18 to get -19.
x=\frac{-19}{6}
Divide both sides by 6.
x=-\frac{19}{6}
Fraction \frac{-19}{6} can be rewritten as -\frac{19}{6} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}