Solve for x
x = \frac{91}{45} = 2\frac{1}{45} \approx 2.022222222
Graph
Share
Copied to clipboard
30\left(5x-4\right)-25\left(3x-8\right)=15\left(2x+7\right)+66
Multiply both sides of the equation by 150, the least common multiple of 5,6,10,25.
150x-120-25\left(3x-8\right)=15\left(2x+7\right)+66
Use the distributive property to multiply 30 by 5x-4.
150x-120-75x+200=15\left(2x+7\right)+66
Use the distributive property to multiply -25 by 3x-8.
75x-120+200=15\left(2x+7\right)+66
Combine 150x and -75x to get 75x.
75x+80=15\left(2x+7\right)+66
Add -120 and 200 to get 80.
75x+80=30x+105+66
Use the distributive property to multiply 15 by 2x+7.
75x+80=30x+171
Add 105 and 66 to get 171.
75x+80-30x=171
Subtract 30x from both sides.
45x+80=171
Combine 75x and -30x to get 45x.
45x=171-80
Subtract 80 from both sides.
45x=91
Subtract 80 from 171 to get 91.
x=\frac{91}{45}
Divide both sides by 45.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}