Solve for x
x<4
Graph
Share
Copied to clipboard
4\left(5x-2\right)-3\left(x-8\right)<6\left(x+14\right)-24
Multiply both sides of the equation by 12, the least common multiple of 3,4,2. Since 12 is positive, the inequality direction remains the same.
20x-8-3\left(x-8\right)<6\left(x+14\right)-24
Use the distributive property to multiply 4 by 5x-2.
20x-8-3x+24<6\left(x+14\right)-24
Use the distributive property to multiply -3 by x-8.
17x-8+24<6\left(x+14\right)-24
Combine 20x and -3x to get 17x.
17x+16<6\left(x+14\right)-24
Add -8 and 24 to get 16.
17x+16<6x+84-24
Use the distributive property to multiply 6 by x+14.
17x+16<6x+60
Subtract 24 from 84 to get 60.
17x+16-6x<60
Subtract 6x from both sides.
11x+16<60
Combine 17x and -6x to get 11x.
11x<60-16
Subtract 16 from both sides.
11x<44
Subtract 16 from 60 to get 44.
x<\frac{44}{11}
Divide both sides by 11. Since 11 is positive, the inequality direction remains the same.
x<4
Divide 44 by 11 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}