Solve for x (complex solution)
x=\frac{5+\sqrt{11}i}{3}\approx 1.666666667+1.105541597i
x=\frac{-\sqrt{11}i+5}{3}\approx 1.666666667-1.105541597i
Graph
Share
Copied to clipboard
\left(3x-1\right)\left(5x-10\right)=\left(3x+2\right)\left(3x-7\right)
Variable x cannot be equal to any of the values -\frac{2}{3},\frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3x-1\right)\left(3x+2\right), the least common multiple of 3x+2,3x-1.
15x^{2}-35x+10=\left(3x+2\right)\left(3x-7\right)
Use the distributive property to multiply 3x-1 by 5x-10 and combine like terms.
15x^{2}-35x+10=9x^{2}-15x-14
Use the distributive property to multiply 3x+2 by 3x-7 and combine like terms.
15x^{2}-35x+10-9x^{2}=-15x-14
Subtract 9x^{2} from both sides.
6x^{2}-35x+10=-15x-14
Combine 15x^{2} and -9x^{2} to get 6x^{2}.
6x^{2}-35x+10+15x=-14
Add 15x to both sides.
6x^{2}-20x+10=-14
Combine -35x and 15x to get -20x.
6x^{2}-20x+10+14=0
Add 14 to both sides.
6x^{2}-20x+24=0
Add 10 and 14 to get 24.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 6\times 24}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -20 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 6\times 24}}{2\times 6}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400-24\times 24}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-20\right)±\sqrt{400-576}}{2\times 6}
Multiply -24 times 24.
x=\frac{-\left(-20\right)±\sqrt{-176}}{2\times 6}
Add 400 to -576.
x=\frac{-\left(-20\right)±4\sqrt{11}i}{2\times 6}
Take the square root of -176.
x=\frac{20±4\sqrt{11}i}{2\times 6}
The opposite of -20 is 20.
x=\frac{20±4\sqrt{11}i}{12}
Multiply 2 times 6.
x=\frac{20+4\sqrt{11}i}{12}
Now solve the equation x=\frac{20±4\sqrt{11}i}{12} when ± is plus. Add 20 to 4i\sqrt{11}.
x=\frac{5+\sqrt{11}i}{3}
Divide 20+4i\sqrt{11} by 12.
x=\frac{-4\sqrt{11}i+20}{12}
Now solve the equation x=\frac{20±4\sqrt{11}i}{12} when ± is minus. Subtract 4i\sqrt{11} from 20.
x=\frac{-\sqrt{11}i+5}{3}
Divide 20-4i\sqrt{11} by 12.
x=\frac{5+\sqrt{11}i}{3} x=\frac{-\sqrt{11}i+5}{3}
The equation is now solved.
\left(3x-1\right)\left(5x-10\right)=\left(3x+2\right)\left(3x-7\right)
Variable x cannot be equal to any of the values -\frac{2}{3},\frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3x-1\right)\left(3x+2\right), the least common multiple of 3x+2,3x-1.
15x^{2}-35x+10=\left(3x+2\right)\left(3x-7\right)
Use the distributive property to multiply 3x-1 by 5x-10 and combine like terms.
15x^{2}-35x+10=9x^{2}-15x-14
Use the distributive property to multiply 3x+2 by 3x-7 and combine like terms.
15x^{2}-35x+10-9x^{2}=-15x-14
Subtract 9x^{2} from both sides.
6x^{2}-35x+10=-15x-14
Combine 15x^{2} and -9x^{2} to get 6x^{2}.
6x^{2}-35x+10+15x=-14
Add 15x to both sides.
6x^{2}-20x+10=-14
Combine -35x and 15x to get -20x.
6x^{2}-20x=-14-10
Subtract 10 from both sides.
6x^{2}-20x=-24
Subtract 10 from -14 to get -24.
\frac{6x^{2}-20x}{6}=-\frac{24}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{20}{6}\right)x=-\frac{24}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{10}{3}x=-\frac{24}{6}
Reduce the fraction \frac{-20}{6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{10}{3}x=-4
Divide -24 by 6.
x^{2}-\frac{10}{3}x+\left(-\frac{5}{3}\right)^{2}=-4+\left(-\frac{5}{3}\right)^{2}
Divide -\frac{10}{3}, the coefficient of the x term, by 2 to get -\frac{5}{3}. Then add the square of -\frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{10}{3}x+\frac{25}{9}=-4+\frac{25}{9}
Square -\frac{5}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{10}{3}x+\frac{25}{9}=-\frac{11}{9}
Add -4 to \frac{25}{9}.
\left(x-\frac{5}{3}\right)^{2}=-\frac{11}{9}
Factor x^{2}-\frac{10}{3}x+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{3}\right)^{2}}=\sqrt{-\frac{11}{9}}
Take the square root of both sides of the equation.
x-\frac{5}{3}=\frac{\sqrt{11}i}{3} x-\frac{5}{3}=-\frac{\sqrt{11}i}{3}
Simplify.
x=\frac{5+\sqrt{11}i}{3} x=\frac{-\sqrt{11}i+5}{3}
Add \frac{5}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}