Solve for x
x=2.6
Graph
Share
Copied to clipboard
\frac{5x}{0.5}+\frac{-1.5}{0.5}-\frac{3x-0.4}{0.2}=\frac{1.2-x}{0.1}
Divide each term of 5x-1.5 by 0.5 to get \frac{5x}{0.5}+\frac{-1.5}{0.5}.
10x+\frac{-1.5}{0.5}-\frac{3x-0.4}{0.2}=\frac{1.2-x}{0.1}
Divide 5x by 0.5 to get 10x.
10x+\frac{-15}{5}-\frac{3x-0.4}{0.2}=\frac{1.2-x}{0.1}
Expand \frac{-1.5}{0.5} by multiplying both numerator and the denominator by 10.
10x-3-\frac{3x-0.4}{0.2}=\frac{1.2-x}{0.1}
Divide -15 by 5 to get -3.
10x-3-\left(\frac{3x}{0.2}+\frac{-0.4}{0.2}\right)=\frac{1.2-x}{0.1}
Divide each term of 3x-0.4 by 0.2 to get \frac{3x}{0.2}+\frac{-0.4}{0.2}.
10x-3-\left(15x+\frac{-0.4}{0.2}\right)=\frac{1.2-x}{0.1}
Divide 3x by 0.2 to get 15x.
10x-3-\left(15x+\frac{-4}{2}\right)=\frac{1.2-x}{0.1}
Expand \frac{-0.4}{0.2} by multiplying both numerator and the denominator by 10.
10x-3-\left(15x-2\right)=\frac{1.2-x}{0.1}
Divide -4 by 2 to get -2.
10x-3-15x-\left(-2\right)=\frac{1.2-x}{0.1}
To find the opposite of 15x-2, find the opposite of each term.
10x-3-15x+2=\frac{1.2-x}{0.1}
The opposite of -2 is 2.
-5x-3+2=\frac{1.2-x}{0.1}
Combine 10x and -15x to get -5x.
-5x-1=\frac{1.2-x}{0.1}
Add -3 and 2 to get -1.
-5x-1=\frac{1.2}{0.1}+\frac{-x}{0.1}
Divide each term of 1.2-x by 0.1 to get \frac{1.2}{0.1}+\frac{-x}{0.1}.
-5x-1=12+\frac{-x}{0.1}
Expand \frac{1.2}{0.1} by multiplying both numerator and the denominator by 10. Anything divided by one gives itself.
-5x-1=12-10x
Divide -x by 0.1 to get -10x.
-5x-1+10x=12
Add 10x to both sides.
5x-1=12
Combine -5x and 10x to get 5x.
5x=12+1
Add 1 to both sides.
5x=13
Add 12 and 1 to get 13.
x=\frac{13}{5}
Divide both sides by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}