Solve for x

x = \frac{79}{15} = 5\frac{4}{15} \approx 5.266666667

$x=1579 =5154 ≈5.266666667$

Graph

Copy

Copied to clipboard

4\left(5x-1\right)-10\left(1+x\right)=60-5\left(x-1\right)

Multiply both sides of the equation by 20, the least common multiple of 5,2,4.

20x-4-10\left(1+x\right)=60-5\left(x-1\right)

Use the distributive property to multiply 4 by 5x-1.

20x-4-10-10x=60-5\left(x-1\right)

Use the distributive property to multiply -10 by 1+x.

20x-14-10x=60-5\left(x-1\right)

Subtract 10 from -4 to get -14.

10x-14=60-5\left(x-1\right)

Combine 20x and -10x to get 10x.

10x-14=60-5x+5

Use the distributive property to multiply -5 by x-1.

10x-14=65-5x

Add 60 and 5 to get 65.

10x-14+5x=65

Add 5x to both sides.

15x-14=65

Combine 10x and 5x to get 15x.

15x=65+14

Add 14 to both sides.

15x=79

Add 65 and 14 to get 79.

x=\frac{79}{15}

Divide both sides by 15.

Examples

Quadratic equation

{ x } ^ { 2 } - 4 x - 5 = 0

$x_{2}−4x−5=0$

Trigonometry

4 \sin \theta \cos \theta = 2 \sin \theta

$4sinθcosθ=2sinθ$

Linear equation

y = 3x + 4

$y=3x+4$

Arithmetic

699 * 533

$699∗533$

Matrix

\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]

$[25 34 ][2−1 01 35 ]$

Simultaneous equation

\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.

${8x+2y=467x+3y=47 $

Differentiation

\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }

$dxd (x−5)(3x_{2}−2) $

Integration

\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x

$∫_{0}xe_{−x_{2}}dx$

Limits

\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}

$x→−3lim x_{2}+2x−3x_{2}−9 $