Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{5x}{\left(x-3\right)\left(x+3\right)}+\frac{2}{x+4}
Factor x^{2}-9.
\frac{5x\left(x+4\right)}{\left(x-3\right)\left(x+3\right)\left(x+4\right)}+\frac{2\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+3\right) and x+4 is \left(x-3\right)\left(x+3\right)\left(x+4\right). Multiply \frac{5x}{\left(x-3\right)\left(x+3\right)} times \frac{x+4}{x+4}. Multiply \frac{2}{x+4} times \frac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}.
\frac{5x\left(x+4\right)+2\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+4\right)}
Since \frac{5x\left(x+4\right)}{\left(x-3\right)\left(x+3\right)\left(x+4\right)} and \frac{2\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{5x^{2}+20x+2x^{2}+6x-6x-18}{\left(x-3\right)\left(x+3\right)\left(x+4\right)}
Do the multiplications in 5x\left(x+4\right)+2\left(x-3\right)\left(x+3\right).
\frac{7x^{2}+20x-18}{\left(x-3\right)\left(x+3\right)\left(x+4\right)}
Combine like terms in 5x^{2}+20x+2x^{2}+6x-6x-18.
\frac{7x^{2}+20x-18}{x^{3}+4x^{2}-9x-36}
Expand \left(x-3\right)\left(x+3\right)\left(x+4\right).