Solve for x
x = \frac{13 \sqrt{63405121} + 17357}{10000} \approx 12.08725324
x=\frac{17357-13\sqrt{63405121}}{10000}\approx -8.61585324
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac { 5 x } { 34.714 } + \frac { .5 x - 15 } { x } = 1
Share
Copied to clipboard
x\times \frac{5x}{34.714}+0.5x-15=x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x\times \frac{2500}{17357}x+0.5x-15=x
Divide 5x by 34.714 to get \frac{2500}{17357}x.
x^{2}\times \frac{2500}{17357}+0.5x-15=x
Multiply x and x to get x^{2}.
x^{2}\times \frac{2500}{17357}+0.5x-15-x=0
Subtract x from both sides.
x^{2}\times \frac{2500}{17357}-0.5x-15=0
Combine 0.5x and -x to get -0.5x.
\frac{2500}{17357}x^{2}-0.5x-15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-0.5\right)±\sqrt{\left(-0.5\right)^{2}-4\times \frac{2500}{17357}\left(-15\right)}}{2\times \frac{2500}{17357}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{2500}{17357} for a, -0.5 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-0.5\right)±\sqrt{0.25-4\times \frac{2500}{17357}\left(-15\right)}}{2\times \frac{2500}{17357}}
Square -0.5 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-0.5\right)±\sqrt{0.25-\frac{10000}{17357}\left(-15\right)}}{2\times \frac{2500}{17357}}
Multiply -4 times \frac{2500}{17357}.
x=\frac{-\left(-0.5\right)±\sqrt{0.25+\frac{150000}{17357}}}{2\times \frac{2500}{17357}}
Multiply -\frac{10000}{17357} times -15.
x=\frac{-\left(-0.5\right)±\sqrt{\frac{617357}{69428}}}{2\times \frac{2500}{17357}}
Add 0.25 to \frac{150000}{17357} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-0.5\right)±\frac{13\sqrt{63405121}}{34714}}{2\times \frac{2500}{17357}}
Take the square root of \frac{617357}{69428}.
x=\frac{0.5±\frac{13\sqrt{63405121}}{34714}}{2\times \frac{2500}{17357}}
The opposite of -0.5 is 0.5.
x=\frac{0.5±\frac{13\sqrt{63405121}}{34714}}{\frac{5000}{17357}}
Multiply 2 times \frac{2500}{17357}.
x=\frac{\frac{13\sqrt{63405121}}{34714}+\frac{1}{2}}{\frac{5000}{17357}}
Now solve the equation x=\frac{0.5±\frac{13\sqrt{63405121}}{34714}}{\frac{5000}{17357}} when ± is plus. Add 0.5 to \frac{13\sqrt{63405121}}{34714}.
x=\frac{13\sqrt{63405121}+17357}{10000}
Divide \frac{1}{2}+\frac{13\sqrt{63405121}}{34714} by \frac{5000}{17357} by multiplying \frac{1}{2}+\frac{13\sqrt{63405121}}{34714} by the reciprocal of \frac{5000}{17357}.
x=\frac{-\frac{13\sqrt{63405121}}{34714}+\frac{1}{2}}{\frac{5000}{17357}}
Now solve the equation x=\frac{0.5±\frac{13\sqrt{63405121}}{34714}}{\frac{5000}{17357}} when ± is minus. Subtract \frac{13\sqrt{63405121}}{34714} from 0.5.
x=\frac{17357-13\sqrt{63405121}}{10000}
Divide \frac{1}{2}-\frac{13\sqrt{63405121}}{34714} by \frac{5000}{17357} by multiplying \frac{1}{2}-\frac{13\sqrt{63405121}}{34714} by the reciprocal of \frac{5000}{17357}.
x=\frac{13\sqrt{63405121}+17357}{10000} x=\frac{17357-13\sqrt{63405121}}{10000}
The equation is now solved.
x\times \frac{5x}{34.714}+0.5x-15=x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x\times \frac{2500}{17357}x+0.5x-15=x
Divide 5x by 34.714 to get \frac{2500}{17357}x.
x^{2}\times \frac{2500}{17357}+0.5x-15=x
Multiply x and x to get x^{2}.
x^{2}\times \frac{2500}{17357}+0.5x-15-x=0
Subtract x from both sides.
x^{2}\times \frac{2500}{17357}-0.5x-15=0
Combine 0.5x and -x to get -0.5x.
x^{2}\times \frac{2500}{17357}-0.5x=15
Add 15 to both sides. Anything plus zero gives itself.
\frac{2500}{17357}x^{2}-0.5x=15
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{2500}{17357}x^{2}-0.5x}{\frac{2500}{17357}}=\frac{15}{\frac{2500}{17357}}
Divide both sides of the equation by \frac{2500}{17357}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{0.5}{\frac{2500}{17357}}\right)x=\frac{15}{\frac{2500}{17357}}
Dividing by \frac{2500}{17357} undoes the multiplication by \frac{2500}{17357}.
x^{2}-3.4714x=\frac{15}{\frac{2500}{17357}}
Divide -0.5 by \frac{2500}{17357} by multiplying -0.5 by the reciprocal of \frac{2500}{17357}.
x^{2}-3.4714x=104.142
Divide 15 by \frac{2500}{17357} by multiplying 15 by the reciprocal of \frac{2500}{17357}.
x^{2}-3.4714x+\left(-1.7357\right)^{2}=104.142+\left(-1.7357\right)^{2}
Divide -3.4714, the coefficient of the x term, by 2 to get -1.7357. Then add the square of -1.7357 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3.4714x+3.01265449=104.142+3.01265449
Square -1.7357 by squaring both the numerator and the denominator of the fraction.
x^{2}-3.4714x+3.01265449=107.15465449
Add 104.142 to 3.01265449 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-1.7357\right)^{2}=107.15465449
Factor x^{2}-3.4714x+3.01265449. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1.7357\right)^{2}}=\sqrt{107.15465449}
Take the square root of both sides of the equation.
x-1.7357=\frac{13\sqrt{63405121}}{10000} x-1.7357=-\frac{13\sqrt{63405121}}{10000}
Simplify.
x=\frac{13\sqrt{63405121}+17357}{10000} x=\frac{17357-13\sqrt{63405121}}{10000}
Add 1.7357 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}