Evaluate
\frac{x^{3}}{y^{6}}
Expand
\frac{x^{3}}{y^{6}}
Share
Copied to clipboard
\frac{\left(5x^{4}+2x^{3}\right)\left(3x-2\right)}{\left(3xy-2y\right)\left(5xy^{5}+2y^{5}\right)}
Multiply \frac{5x^{4}+2x^{3}}{3xy-2y} times \frac{3x-2}{5xy^{5}+2y^{5}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(3x-2\right)\left(5x+2\right)x^{3}}{y\left(3x-2\right)\left(5x+2\right)y^{5}}
Factor the expressions that are not already factored.
\frac{x^{3}}{yy^{5}}
Cancel out \left(3x-2\right)\left(5x+2\right) in both numerator and denominator.
\frac{x^{3}}{y^{6}}
Expand the expression.
\frac{\left(5x^{4}+2x^{3}\right)\left(3x-2\right)}{\left(3xy-2y\right)\left(5xy^{5}+2y^{5}\right)}
Multiply \frac{5x^{4}+2x^{3}}{3xy-2y} times \frac{3x-2}{5xy^{5}+2y^{5}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(3x-2\right)\left(5x+2\right)x^{3}}{y\left(3x-2\right)\left(5x+2\right)y^{5}}
Factor the expressions that are not already factored.
\frac{x^{3}}{yy^{5}}
Cancel out \left(3x-2\right)\left(5x+2\right) in both numerator and denominator.
\frac{x^{3}}{y^{6}}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}