Evaluate
\frac{1}{x^{4}}
Differentiate w.r.t. x
-\frac{4}{x^{5}}
Graph
Share
Copied to clipboard
\left(5x^{-2}\right)^{1}\times \frac{1}{5x^{2}}
Use the rules of exponents to simplify the expression.
5^{1}\left(x^{-2}\right)^{1}\times \frac{1}{5}\times \frac{1}{x^{2}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
5^{1}\times \frac{1}{5}\left(x^{-2}\right)^{1}\times \frac{1}{x^{2}}
Use the Commutative Property of Multiplication.
5^{1}\times \frac{1}{5}x^{-2}x^{2\left(-1\right)}
To raise a power to another power, multiply the exponents.
5^{1}\times \frac{1}{5}x^{-2}x^{-2}
Multiply 2 times -1.
5^{1}\times \frac{1}{5}x^{-2-2}
To multiply powers of the same base, add their exponents.
5^{1}\times \frac{1}{5}x^{-4}
Add the exponents -2 and -2.
5^{1-1}x^{-4}
To multiply powers of the same base, add their exponents.
5^{0}x^{-4}
Add the exponents 1 and -1.
1x^{-4}
For any term t except 0, t^{0}=1.
x^{-4}
For any term t, t\times 1=t and 1t=t.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5}{5}x^{-2-2})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{-4})
Do the arithmetic.
-4x^{-4-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-4x^{-5}
Do the arithmetic.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}