Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{5x^{3}\times 5}{\left(5x^{\frac{-3}{2}}\right)^{2}}
To multiply powers of the same base, add their exponents. Add \frac{3}{5} and \frac{12}{5} to get 3.
\frac{25x^{3}}{\left(5x^{\frac{-3}{2}}\right)^{2}}
Multiply 5 and 5 to get 25.
\frac{25x^{3}}{\left(5x^{-\frac{3}{2}}\right)^{2}}
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{25x^{3}}{5^{2}\left(x^{-\frac{3}{2}}\right)^{2}}
Expand \left(5x^{-\frac{3}{2}}\right)^{2}.
\frac{25x^{3}}{5^{2}x^{-3}}
To raise a power to another power, multiply the exponents. Multiply -\frac{3}{2} and 2 to get -3.
\frac{25x^{3}}{25x^{-3}}
Calculate 5 to the power of 2 and get 25.
\frac{x^{3}}{x^{-3}}
Cancel out 25 in both numerator and denominator.
x^{6}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x^{3}\times 5}{\left(5x^{\frac{-3}{2}}\right)^{2}})
To multiply powers of the same base, add their exponents. Add \frac{3}{5} and \frac{12}{5} to get 3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{25x^{3}}{\left(5x^{\frac{-3}{2}}\right)^{2}})
Multiply 5 and 5 to get 25.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{25x^{3}}{\left(5x^{-\frac{3}{2}}\right)^{2}})
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{25x^{3}}{5^{2}\left(x^{-\frac{3}{2}}\right)^{2}})
Expand \left(5x^{-\frac{3}{2}}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{25x^{3}}{5^{2}x^{-3}})
To raise a power to another power, multiply the exponents. Multiply -\frac{3}{2} and 2 to get -3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{25x^{3}}{25x^{-3}})
Calculate 5 to the power of 2 and get 25.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}}{x^{-3}})
Cancel out 25 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
6x^{6-1}
The derivative of ax^{n} is nax^{n-1}.
6x^{5}
Subtract 1 from 6.