Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(5x+8\right)\left(3x-4\right)}{\left(3x-4\right)\left(3x+4\right)}-\frac{\left(5x+2\right)\left(3x+4\right)}{\left(3x-4\right)\left(3x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x+4 and 3x-4 is \left(3x-4\right)\left(3x+4\right). Multiply \frac{5x+8}{3x+4} times \frac{3x-4}{3x-4}. Multiply \frac{5x+2}{3x-4} times \frac{3x+4}{3x+4}.
\frac{\left(5x+8\right)\left(3x-4\right)-\left(5x+2\right)\left(3x+4\right)}{\left(3x-4\right)\left(3x+4\right)}
Since \frac{\left(5x+8\right)\left(3x-4\right)}{\left(3x-4\right)\left(3x+4\right)} and \frac{\left(5x+2\right)\left(3x+4\right)}{\left(3x-4\right)\left(3x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{15x^{2}-20x+24x-32-15x^{2}-20x-6x-8}{\left(3x-4\right)\left(3x+4\right)}
Do the multiplications in \left(5x+8\right)\left(3x-4\right)-\left(5x+2\right)\left(3x+4\right).
\frac{-22x-40}{\left(3x-4\right)\left(3x+4\right)}
Combine like terms in 15x^{2}-20x+24x-32-15x^{2}-20x-6x-8.
\frac{-22x-40}{9x^{2}-16}
Expand \left(3x-4\right)\left(3x+4\right).
\frac{\left(5x+8\right)\left(3x-4\right)}{\left(3x-4\right)\left(3x+4\right)}-\frac{\left(5x+2\right)\left(3x+4\right)}{\left(3x-4\right)\left(3x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x+4 and 3x-4 is \left(3x-4\right)\left(3x+4\right). Multiply \frac{5x+8}{3x+4} times \frac{3x-4}{3x-4}. Multiply \frac{5x+2}{3x-4} times \frac{3x+4}{3x+4}.
\frac{\left(5x+8\right)\left(3x-4\right)-\left(5x+2\right)\left(3x+4\right)}{\left(3x-4\right)\left(3x+4\right)}
Since \frac{\left(5x+8\right)\left(3x-4\right)}{\left(3x-4\right)\left(3x+4\right)} and \frac{\left(5x+2\right)\left(3x+4\right)}{\left(3x-4\right)\left(3x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{15x^{2}-20x+24x-32-15x^{2}-20x-6x-8}{\left(3x-4\right)\left(3x+4\right)}
Do the multiplications in \left(5x+8\right)\left(3x-4\right)-\left(5x+2\right)\left(3x+4\right).
\frac{-22x-40}{\left(3x-4\right)\left(3x+4\right)}
Combine like terms in 15x^{2}-20x+24x-32-15x^{2}-20x-6x-8.
\frac{-22x-40}{9x^{2}-16}
Expand \left(3x-4\right)\left(3x+4\right).