Solve for y
y=\frac{5x+7}{6x\left(x+3\right)}
x\neq -\frac{7}{5}\text{ and }x\neq -3\text{ and }x\neq 0
Solve for x
x=-\frac{\sqrt{324y^{2}-12y+25}+18y-5}{12y}
x=-\frac{-\sqrt{324y^{2}-12y+25}+18y-5}{12y}\text{, }y\neq 0
Graph
Share
Copied to clipboard
5x+7-2x\times 3xy+3xy\left(-5\right)=3xy
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3xy.
5x+7-2x^{2}\times 3y+3xy\left(-5\right)=3xy
Multiply x and x to get x^{2}.
5x+7-6x^{2}y+3xy\left(-5\right)=3xy
Multiply -2 and 3 to get -6.
5x+7-6x^{2}y-15xy=3xy
Multiply 3 and -5 to get -15.
5x+7-6x^{2}y-15xy-3xy=0
Subtract 3xy from both sides.
5x+7-6x^{2}y-18xy=0
Combine -15xy and -3xy to get -18xy.
7-6x^{2}y-18xy=-5x
Subtract 5x from both sides. Anything subtracted from zero gives its negation.
-6x^{2}y-18xy=-5x-7
Subtract 7 from both sides.
\left(-6x^{2}-18x\right)y=-5x-7
Combine all terms containing y.
\frac{\left(-6x^{2}-18x\right)y}{-6x^{2}-18x}=\frac{-5x-7}{-6x^{2}-18x}
Divide both sides by -18x-6x^{2}.
y=\frac{-5x-7}{-6x^{2}-18x}
Dividing by -18x-6x^{2} undoes the multiplication by -18x-6x^{2}.
y=\frac{5x+7}{6x\left(x+3\right)}
Divide -5x-7 by -18x-6x^{2}.
y=\frac{5x+7}{6x\left(x+3\right)}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}