Evaluate
\frac{2\left(2x^{4}+4x^{3}-10x^{2}-5x+10\right)}{x^{2}\left(x^{2}-4\right)}
Expand
\frac{2\left(2x^{4}+4x^{3}-10x^{2}-5x+10\right)}{x^{2}\left(x^{2}-4\right)}
Graph
Share
Copied to clipboard
\frac{5x+5}{x\left(x+2\right)}-\frac{5}{x^{2}}+\frac{4x-5}{x-2}
Factor x^{2}+2x.
\frac{\left(5x+5\right)x}{\left(x+2\right)x^{2}}-\frac{5\left(x+2\right)}{\left(x+2\right)x^{2}}+\frac{4x-5}{x-2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+2\right) and x^{2} is \left(x+2\right)x^{2}. Multiply \frac{5x+5}{x\left(x+2\right)} times \frac{x}{x}. Multiply \frac{5}{x^{2}} times \frac{x+2}{x+2}.
\frac{\left(5x+5\right)x-5\left(x+2\right)}{\left(x+2\right)x^{2}}+\frac{4x-5}{x-2}
Since \frac{\left(5x+5\right)x}{\left(x+2\right)x^{2}} and \frac{5\left(x+2\right)}{\left(x+2\right)x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{5x^{2}+5x-5x-10}{\left(x+2\right)x^{2}}+\frac{4x-5}{x-2}
Do the multiplications in \left(5x+5\right)x-5\left(x+2\right).
\frac{5x^{2}-10}{\left(x+2\right)x^{2}}+\frac{4x-5}{x-2}
Combine like terms in 5x^{2}+5x-5x-10.
\frac{\left(5x^{2}-10\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)x^{2}}+\frac{\left(4x-5\right)\left(x+2\right)x^{2}}{\left(x-2\right)\left(x+2\right)x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+2\right)x^{2} and x-2 is \left(x-2\right)\left(x+2\right)x^{2}. Multiply \frac{5x^{2}-10}{\left(x+2\right)x^{2}} times \frac{x-2}{x-2}. Multiply \frac{4x-5}{x-2} times \frac{\left(x+2\right)x^{2}}{\left(x+2\right)x^{2}}.
\frac{\left(5x^{2}-10\right)\left(x-2\right)+\left(4x-5\right)\left(x+2\right)x^{2}}{\left(x-2\right)\left(x+2\right)x^{2}}
Since \frac{\left(5x^{2}-10\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)x^{2}} and \frac{\left(4x-5\right)\left(x+2\right)x^{2}}{\left(x-2\right)\left(x+2\right)x^{2}} have the same denominator, add them by adding their numerators.
\frac{5x^{3}-10x^{2}-10x+20+4x^{4}+8x^{3}-5x^{3}-10x^{2}}{\left(x-2\right)\left(x+2\right)x^{2}}
Do the multiplications in \left(5x^{2}-10\right)\left(x-2\right)+\left(4x-5\right)\left(x+2\right)x^{2}.
\frac{8x^{3}-20x^{2}-10x+20+4x^{4}}{\left(x-2\right)\left(x+2\right)x^{2}}
Combine like terms in 5x^{3}-10x^{2}-10x+20+4x^{4}+8x^{3}-5x^{3}-10x^{2}.
\frac{8x^{3}-20x^{2}-10x+20+4x^{4}}{x^{4}-4x^{2}}
Expand \left(x-2\right)\left(x+2\right)x^{2}.
\frac{5x+5}{x\left(x+2\right)}-\frac{5}{x^{2}}+\frac{4x-5}{x-2}
Factor x^{2}+2x.
\frac{\left(5x+5\right)x}{\left(x+2\right)x^{2}}-\frac{5\left(x+2\right)}{\left(x+2\right)x^{2}}+\frac{4x-5}{x-2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+2\right) and x^{2} is \left(x+2\right)x^{2}. Multiply \frac{5x+5}{x\left(x+2\right)} times \frac{x}{x}. Multiply \frac{5}{x^{2}} times \frac{x+2}{x+2}.
\frac{\left(5x+5\right)x-5\left(x+2\right)}{\left(x+2\right)x^{2}}+\frac{4x-5}{x-2}
Since \frac{\left(5x+5\right)x}{\left(x+2\right)x^{2}} and \frac{5\left(x+2\right)}{\left(x+2\right)x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{5x^{2}+5x-5x-10}{\left(x+2\right)x^{2}}+\frac{4x-5}{x-2}
Do the multiplications in \left(5x+5\right)x-5\left(x+2\right).
\frac{5x^{2}-10}{\left(x+2\right)x^{2}}+\frac{4x-5}{x-2}
Combine like terms in 5x^{2}+5x-5x-10.
\frac{\left(5x^{2}-10\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)x^{2}}+\frac{\left(4x-5\right)\left(x+2\right)x^{2}}{\left(x-2\right)\left(x+2\right)x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+2\right)x^{2} and x-2 is \left(x-2\right)\left(x+2\right)x^{2}. Multiply \frac{5x^{2}-10}{\left(x+2\right)x^{2}} times \frac{x-2}{x-2}. Multiply \frac{4x-5}{x-2} times \frac{\left(x+2\right)x^{2}}{\left(x+2\right)x^{2}}.
\frac{\left(5x^{2}-10\right)\left(x-2\right)+\left(4x-5\right)\left(x+2\right)x^{2}}{\left(x-2\right)\left(x+2\right)x^{2}}
Since \frac{\left(5x^{2}-10\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)x^{2}} and \frac{\left(4x-5\right)\left(x+2\right)x^{2}}{\left(x-2\right)\left(x+2\right)x^{2}} have the same denominator, add them by adding their numerators.
\frac{5x^{3}-10x^{2}-10x+20+4x^{4}+8x^{3}-5x^{3}-10x^{2}}{\left(x-2\right)\left(x+2\right)x^{2}}
Do the multiplications in \left(5x^{2}-10\right)\left(x-2\right)+\left(4x-5\right)\left(x+2\right)x^{2}.
\frac{8x^{3}-20x^{2}-10x+20+4x^{4}}{\left(x-2\right)\left(x+2\right)x^{2}}
Combine like terms in 5x^{3}-10x^{2}-10x+20+4x^{4}+8x^{3}-5x^{3}-10x^{2}.
\frac{8x^{3}-20x^{2}-10x+20+4x^{4}}{x^{4}-4x^{2}}
Expand \left(x-2\right)\left(x+2\right)x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}