Solve for x
x=\frac{\sqrt{881}-31}{20}\approx -0.065917792
x=\frac{-\sqrt{881}-31}{20}\approx -3.034082208
Graph
Share
Copied to clipboard
\left(5x+2\right)\left(5x+2\right)=\left(5x-2\right)\left(3x-1\right)
Variable x cannot be equal to any of the values -\frac{2}{5},\frac{2}{5} since division by zero is not defined. Multiply both sides of the equation by \left(5x-2\right)\left(5x+2\right), the least common multiple of 5x-2,5x+2.
\left(5x+2\right)^{2}=\left(5x-2\right)\left(3x-1\right)
Multiply 5x+2 and 5x+2 to get \left(5x+2\right)^{2}.
25x^{2}+20x+4=\left(5x-2\right)\left(3x-1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5x+2\right)^{2}.
25x^{2}+20x+4=15x^{2}-11x+2
Use the distributive property to multiply 5x-2 by 3x-1 and combine like terms.
25x^{2}+20x+4-15x^{2}=-11x+2
Subtract 15x^{2} from both sides.
10x^{2}+20x+4=-11x+2
Combine 25x^{2} and -15x^{2} to get 10x^{2}.
10x^{2}+20x+4+11x=2
Add 11x to both sides.
10x^{2}+31x+4=2
Combine 20x and 11x to get 31x.
10x^{2}+31x+4-2=0
Subtract 2 from both sides.
10x^{2}+31x+2=0
Subtract 2 from 4 to get 2.
x=\frac{-31±\sqrt{31^{2}-4\times 10\times 2}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, 31 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-31±\sqrt{961-4\times 10\times 2}}{2\times 10}
Square 31.
x=\frac{-31±\sqrt{961-40\times 2}}{2\times 10}
Multiply -4 times 10.
x=\frac{-31±\sqrt{961-80}}{2\times 10}
Multiply -40 times 2.
x=\frac{-31±\sqrt{881}}{2\times 10}
Add 961 to -80.
x=\frac{-31±\sqrt{881}}{20}
Multiply 2 times 10.
x=\frac{\sqrt{881}-31}{20}
Now solve the equation x=\frac{-31±\sqrt{881}}{20} when ± is plus. Add -31 to \sqrt{881}.
x=\frac{-\sqrt{881}-31}{20}
Now solve the equation x=\frac{-31±\sqrt{881}}{20} when ± is minus. Subtract \sqrt{881} from -31.
x=\frac{\sqrt{881}-31}{20} x=\frac{-\sqrt{881}-31}{20}
The equation is now solved.
\left(5x+2\right)\left(5x+2\right)=\left(5x-2\right)\left(3x-1\right)
Variable x cannot be equal to any of the values -\frac{2}{5},\frac{2}{5} since division by zero is not defined. Multiply both sides of the equation by \left(5x-2\right)\left(5x+2\right), the least common multiple of 5x-2,5x+2.
\left(5x+2\right)^{2}=\left(5x-2\right)\left(3x-1\right)
Multiply 5x+2 and 5x+2 to get \left(5x+2\right)^{2}.
25x^{2}+20x+4=\left(5x-2\right)\left(3x-1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5x+2\right)^{2}.
25x^{2}+20x+4=15x^{2}-11x+2
Use the distributive property to multiply 5x-2 by 3x-1 and combine like terms.
25x^{2}+20x+4-15x^{2}=-11x+2
Subtract 15x^{2} from both sides.
10x^{2}+20x+4=-11x+2
Combine 25x^{2} and -15x^{2} to get 10x^{2}.
10x^{2}+20x+4+11x=2
Add 11x to both sides.
10x^{2}+31x+4=2
Combine 20x and 11x to get 31x.
10x^{2}+31x=2-4
Subtract 4 from both sides.
10x^{2}+31x=-2
Subtract 4 from 2 to get -2.
\frac{10x^{2}+31x}{10}=-\frac{2}{10}
Divide both sides by 10.
x^{2}+\frac{31}{10}x=-\frac{2}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}+\frac{31}{10}x=-\frac{1}{5}
Reduce the fraction \frac{-2}{10} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{31}{10}x+\left(\frac{31}{20}\right)^{2}=-\frac{1}{5}+\left(\frac{31}{20}\right)^{2}
Divide \frac{31}{10}, the coefficient of the x term, by 2 to get \frac{31}{20}. Then add the square of \frac{31}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{31}{10}x+\frac{961}{400}=-\frac{1}{5}+\frac{961}{400}
Square \frac{31}{20} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{31}{10}x+\frac{961}{400}=\frac{881}{400}
Add -\frac{1}{5} to \frac{961}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{31}{20}\right)^{2}=\frac{881}{400}
Factor x^{2}+\frac{31}{10}x+\frac{961}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{31}{20}\right)^{2}}=\sqrt{\frac{881}{400}}
Take the square root of both sides of the equation.
x+\frac{31}{20}=\frac{\sqrt{881}}{20} x+\frac{31}{20}=-\frac{\sqrt{881}}{20}
Simplify.
x=\frac{\sqrt{881}-31}{20} x=\frac{-\sqrt{881}-31}{20}
Subtract \frac{31}{20} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}